
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2004 100

Joint Channel State Estimation and Decoding of
Low-Density Parity-Check Codes on the Two-State
Noiseless/Useless BSC Block Interference Channel

Wongkot Vijacksungsithi and Kim A. Winick

Abstract— We apply the density evolution technique to deter-
mine the thresholds of low-density parity-check codes when the
sum-product algorithm is employed to perform joint channel
state estimation and decoding. The channel considered is the two-
state noiseless/useless BSC block interference channel, where a
block of h consecutive symbols shares the same channel state
which is either a noiseless BSC (crossover probability 0) or
a useless BSC (crossover probability 1/2). The channel state
is selected independently and at random from block to block
according to a known prior distribution. The threshold of the
joint channel state estimation/decoding scheme when utilized over
such a channel is shown to be greatly superior to that of a
decoder that makes no attempt to estimate the channel state.
These results are also confirmed by simulation. The maximum
likelihood performance of LDPC codes when used over this
channel is investigated. Lower bounds on the error exponents
of regular LDPC codes, when maximum likelihood decoded, are
shown to be close to the random coding channel error exponent
when the LDPC variable node degree is high.

Index Terms— LDPC codes, iterative decoding, channel state
estimation, density evolution, error exponent.

I. I NTRODUCTION

I N 1962, R. Gallager [1] proposed a class of codes, known
asLow-Density Parity-Check (LDPC) Codes, that held the

promise of achieving good performance while using low com-
plexity iterative decoding algorithms. To investigate theper-
formance of LDPC codes when optimally decoded, Gallager
derived an upper bound on the error probability of maximum-
likelihood decoding that is applicable to any specific code
or to the average performance of a code ensemble used on
binary-input symmetric memoryless channels provided thatthe
weight distributions of the code or code ensemble are known.
The maximum likelihood decoder, however, is prohibitively
too complex to implement, and in practice, LDPC decoders
usually employ suboptimal iterative algorithms that can pro-
vide good empirical performance while having a complexity
that grows only linearly with the codeword length. In order
to analyze the behavior of suboptimal iterative decoding
algorithms, Gallager proposed a technique that keeps track
of the probability of passing an incorrect message along an
edge of the bipartite graph representation of the code at each
iteration step. Gallager’s analysis assumed that the bipartite
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graph representation of the code does not contain any cycles
of length less than the number of iterations, and a method to
construct LDPC codes whose bipartite graph representations
have arbitrary large diameters was also described. In 1998,
Luby et al. [2] generalized Gallager’s result to include irregular
LDPC codes and showed that, for a randomly chosen code,
the actual fraction of decoded bit errors at iteration step
l converges with probability 1 to the expected number of
decoded bit errors as the codeword length,n, of the code
approaches∞. This result is known as theConcentration The-
oremand the maximum value of the channelnoisefor which
the expected fraction of incorrectly decoded codeword bits
converges to zero as the number of message passing iterations
increases is called thethreshold. Subsequently, Richardson
et al. [3] extended the result to message passing algorithms
(such as belief propagation or sum-product) having infinite-
sized alphabets. Richardson also proposed a technique, named
Density Evolution, to numerically compute thresholds. This
technique has been successfully employed to find codes that
have performance close to channel capacity [4][5].

In this study, we apply the density evolution technique
to investigate the performance of LDPC when the iterative
message passing algorithm is used forjoint channel state
estimation/decoding over the two-state, noiseless/useless BSC,
block interference channel. Related results have also been
described in a recent conference presentation [6]. The mes-
sage passing algorithm is derived based on a factor graph
representation suggested by Wiberg [7] and first implemented
by Worthen [8][9][10][11] for this application. The threshold
of the joint channel state estimation/decoding scheme is nu-
merically evaluated by density evolution and compared with
capacity. These results are also confirmed by simulation, and
substantial improvements in performance are demonstratedby
using this joint channel state estimation/decoding approach.
Finally, the maximum likelihood performance of LDPC codes
used over a block interference channel is investigated. By ap-
plying the bounding technique originally proposed by Gallager
[1] for binary input symmetric memoryless channels, a lower
bound on the error exponent for LDPC codes used over the
two-state noiseless/useless BSC block interference channel is
derived from the average weight distribution spectra of these
codes.

Joint channel state estimation/LDPC decoding algorithms
based on factor graph representations of the combined channel
and code have also been studied by others. Garcı́a-Fŕıas [12]
and Ratzer [13] presented simulation results demonstrating
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that such an approach used for the Gilbert-Elliott channel
could outperform receiver implementations that make no at-
tempt to estimate the channel state. Eckford et al. [14][15][16]
in a series of conference papers extended these results (forthe
Gilbert-Elliott channel) by computing thresholds of the joint
estimation/decoding algorithms using density evolution.

The organization of this paper is as follows. In section II,
we present the factor graph representation of LDPC codes
when used over block interference channel along with the
corresponding sum-product algorithm for joint channel state
estimation and decoding. In section III, we describe the density
evolution process for the algorithms presented in section II.
Threshold values computed using density evolution along with
simulation results are also presented. In section IV, a lower
bound on the error exponent of LDPC codes when used
over the two-state BSC useless/noiseless block interference
channel, based on maximum likelihood decoding, is derived
and evaluated. Finally, our conclusions are given in section V.

II. JOINT CHANNEL STATE ESTIMATION AND DECODING

OF LDPC CODES ONBLOCK INTERFERENCECHANNELS

A binary low-density parity-check (LDPC) code is a binary
linear error correcting code specified by a parity-check matrix
H whose column and row weights are a small fraction of
the codeword length. If the parity-check matrix has constant
row and column weight, the code is said to be regular, and
otherwise irregular. A regular LDPC code will be denoted by
the triplet (n, j, k) wheren is the codeword length,j is the
column weight (also called the variable node degree) andk
is the row weight. The rate,R, of such a code satisfies the
conditionR ≥ 1 − j/k.

A factor graphrepresentation [17] is a bipartite graph that
expresses the structure of the factorization of a global function
as the product of local functions. A factor graph has two types
of nodes, there is avariable nodefor each variablexi and a
factor nodefor each local functionfj . An edge connecting
variable node ofxi to factor node offj if and only if xi is
an argument offj .

Given a functiong(x1, . . . , xn), we are often interested in
computing themarginal functionsgi(xi). For eacha ∈ Ai,
the value of gi(a) is obtained by summing the value of
g(x1, . . . , xn) over all possible values of its variables other
than xi, with xi = a. For example, if we have some real-
valued functiong(x1, x2, x3, x4), then

g2(a) =
∑

x1∈A1

∑

x3∈A3

∑

x4∈A4

g(x1, x2 = a, x3, x4) (1)

The operation described by (1) is called themarginalization
of the global functiong(x1, . . . , xn) with respect to variable
x2. Thesum-productalgorithm is an efficient message passing
algorithm for computing these marginal functions. The sum-
product algorithm is described in details in [7][17][18].

In this paper we will consider theblock interference channel
as described by McEliece et al. [19]. For each transmitted
symbol xt, this channel is completely characterized by its
channel transition probabilitiesp(yt|xt, s) where yt is the
corresponding channel output ands denotes the channel state.
The channel is assumed to remain in the same state for each

block ofh consecutive transmitted channel symbols. This state
is selected at random, independently from block to block
and independently from the transmitted symbol sequence,
according to some known prior distribution. This channel
model is a good representation for a frequency hopped system
operating in the presence of partial band jamming. We will
further restrict our analysis to two-state, binary-input channels,
and in particular, to the two-state, noiseless/usesless, BSC. For
each transmitted bit, this channel behaves as a BSC whose
crossover probability is either zero (noiseless state) or1/2
(useless state). The prior probability that the channel is in the
useless state will be denoted asǫb.

Let x be a codeword of a binary LDPC codeC of length
n and rateR, let y = {yt}, t = 0, 1, . . . , n − 1 be the
received sequence resulting from transmittingx = {xt},
t = 0, 1, . . . , n − 1 over the block interference channel and
let si be the channel state corresponding toith block of h
symbols. Assuming that all codewordsx are equiprobable,
the maximum likelihood (ML) bit decoding rule is given by

x̂i = arg max
xi

∑

x
′∈C:x′

i=xi

Pr(y|x′) (2)

= arg max
xi

∑

x
′∈{0,1}n:x′

i=xi

I[x′ ∈ C] Pr(y|x′) (3)

where n is the length of the code andI[r] is the indicator
function which equals 1 if the statementr is true and is 0
otherwise. We have

∑

x
′∈{0,1}n:x′

i=xi

I[x′ ∈ C] Pr(y|x′)

=
∑

x
′∈{0,1}n:x′

i=xi

I[x′ ∈ C]
∑

s

p(s,y|x′) (4)

=
∑

x
′∈{0,1}n:x′

i=xi

I[x′ ∈ C]
∑

s

p(y|s,x′)p(s|x′) (5)

=
∑

x
′∈{0,1}n:x′

i=xi

∑

s

I[x′ ∈ C] ·

n−1∏

t=0

p(yt|s⌊ t
h
⌋, x

′
t)

·

⌈n
h
⌉−1∏

j=0

p(sj) (6)

=
∑

x
′∈{0,1}n:x′

i=xi

∑

s

m−1∏

k=0

I[x′ satisfies thekth parity check]

·
n−1∏

t=0

p(yt|s⌊ t
h
⌋, x

′
t) ·

⌈n
h
⌉−1∏

j=0

p(sj) (7)

where m is the number of rows in the parity-check matrix
of C, i.e. m = n(1 − R). Eq. (6) follows from (5) by
invoking the independence of the state from the transmitted
symbols and from block to block. Note that (7) represents
the marginalization of a global function that can be factored.
The corresponding factor graph follows immediately and is
shown in Fig. 1 for the case of a (2,3)-regular LDPC code
with codeword length 9 and block lengthh = 3. Variable
nodes are shown as filled circles and factor nodes are shown
as open circles. Here,Si is the variable node representing
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the channel state,Xi is the variable node representing each
bit in the codeword,Ci is the factor node representing each
parity check, i.e.Ci corresponds toI[x′ satisfies theith parity
check equation],Ui is the factor node corresponding to the
prior probability distributions on the channel states andWi

is the factor node that representsp(yi|s⌊ i
h
⌋, x

′
i). Note that we

suppress the variable nodes for the received symbolYi and
incorporate this information directly into nodeWi.
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Fig. 1. Factor graph representing (2,3)-regular LDPC code over the block
interference channel withh = 3 andm = 6

We can apply the sum-product algorithm to approximate
the likelihood function of each codeword bit as described by
(4). In the sum-product algorithm, the message sent along any
edge connected toXi at message-passing cyclel equals or
approximates (depending on whether the graph has cycles)
the a posteriori probability of bitxi conditioned on all the
information available in the subgraph that contributes to that
message computation. The message consists of two a posteriori
probabilitiesP0 for xi = 0 and P1 for xi = 1. It will be
more convenient to represent these two numbers, and hence
the message, by the single quantitylog(P0/P1). This will be
referred to as the log-likelihood ratios (LLRs) representation.
If the channel possesses more than 2 states, it is not possible
to also use an LLR message representation along edges
(S⌊ i

h
⌋,Wi) and(Ui, Si). Here, however, we will only consider

the case when the channel has 2 states, labeled 0 and 1. This
assumption enables us to also pass the state message as a single
number in an LLR representation along each edge connected
to a state nodeSi. The sum-product message update rules for
a two-state channel when all messages are in an LLR format
can be explicitly written as follows

• Variable-to-factor node message update

µS
⌊ i

h
⌋
→Wi

= µU
⌊ i

h
⌋
→S

⌊ i
h

⌋
+

∑

Wj∈Ne(S
⌊ i

h
⌋
)\Wi

µWj→S
⌊ i

h
⌋

(8)

µXi→Wi
=

∑

Cj∈Ne(Xi)

µCj→Xi
(9)

µXi→Cj
= µWi→Xi

+
∑

Ck∈Ne(Xi)\Cj

µCk→Xi
(10)

• Factor-to-variable node message update

µUi→Si
= log

p(si = 0)

p(si = 1)
(11)

µWi→S
⌊ i

h
⌋

=

log

∑
xi∈{0,1}

p(yi|xi, s⌊ i
h
⌋ = 0) · e

(1−xi)·µXi→Wi

1+e
µXi→Wi

∑
xi∈{0,1}

p(yi|xi, s⌊ i
h
⌋ = 1) · e

(1−xi)·µXi→Wi

1+e
µXi→Wi

(12)

µWi→Xi
=

log

∑
s
⌊ i

h
⌋
∈{0,1}

p(yi|xi = 0, s⌊ i
h
⌋) ·

e
(1−s

⌊ i
h

⌋
)·µS

⌊ i
h

⌋
→Wi

1+e
µS

⌊ i
h

⌋
→Wi

∑
s
⌊ i

h
⌋
∈{0,1}

p(yi|xi = 1, s⌊ i
h
⌋) ·

e
(1−s

⌊ i
h

⌋
)·µS

⌊ i
h

⌋
→Wi

1+e
µS

⌊ i
h

⌋
→Wi

(13)

µCi→Xj
=

2 tanh−1




∏

Xk∈Ne(Ci)\Xj

tanh
(µXk→Ci

2

)

 (14)

In the case of the joint channel state estimation and de-
coding, p(si) is the prior probability of the channel state.
If this prior information is not available, all channel states
are assumed equiprobable. In the case when channel state
is known to the receiver (i.e. perfect channel state side
information (CSI)),p(si) becomes an indicator function with
p(si) = 1 if si is the channel state of blocki and 0 otherwise.
For both cases, the message update in (11) needs to be done
only at the initialization and no further update is required. Note
that there is no message update fromSi to Ui, because each
nodeUi has only one edge, and according to the sum-product
algorithm, the message it receives on that single edge cannot
be used to calculate an updated message for that edge.

The messages leaving each node are updated using (8)-(14)
according to a schedule. When the graph has cycles, the result
obtained from any schedule is just an approximation of the
desired marginals and there is no general rule for optimal
scheduling. A number of scheduling methods have been used
including flooding and sequential. Withflooding scheduling, a
new message is passed along each edge in the graph in both
directions in parallel during each message passing iteration,
and message passing is stopped after some fixed number
of iterations are performed or when some other specified
conditions are satisfied. In sequential scheduling the nodes
are partitioned into disjoint sets. The message passing is done
within a set on a set by set basis according to some specified
order. When a set of nodes is scheduled to be updated, all
nodes in that set are updated in parallel. In the work reported
here, we employ sequential scheduling with updates performed
in the following orderµS

⌊ i
h

⌋
→Wi

, µWi→Xi
, µXi→Cj

, µCj→Xi
,

µXi→Wi
, µWi→S

⌊ i
h

⌋
, µS

⌊ i
h

⌋
→Wi

and so on.
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III. PERFORMANCE OFLDPC CODESEVALUATED BY

DENSITY EVOLUTION ON THE BLOCK INTERFERENCE

CHANNEL

It is shown in [3] that when a binary-input memoryless
channel and message passing algorithm satisfies a certain set
of symmetry conditions then the codeword bit positions that
are decoded in error for a fixed channel realization will not
depend on which codeword is transmitted. This result can be
extended to include the joint channel state estimation/decoding
algorithm given by (8)-(14) when used over the two-state,
noiseless/useless BSC, block interference channel [20]. Thus,
when evaluating bit error rate performance, we can assume
without loss of generality that the all zero codeword is
transmitted.

It is shown in [3] that if we pick a code at random with equal
probability from an LDPC code ensemble, then the fraction of
codeword bits decoded in error with sum-product decoding on
a memoryless channel will converge with probability 1 to the
probability that a message error occurs along any specified
directed edge leaving a codeword bit node and terminating
on a check node. Assuming that the all zero codeword was
transmitted, a message error occurs when the message (in
LLR format) leaving a codeword bit node is negative. Thus
the average bit-error-rate (BER) performance of the LDPC
code ensemble, when used with sum-product decoding over a
memoryless channel, can be found once the probability density
of a message leaving a codeword bit node is known. This
result, known as the concentration theorem, can be extended
[20] to the class of block interference channels with finite
block lengthh by using a slightly modified version of the edge
exposure martingale argument given in [3] for memoryless
channels.

If the diameter of the factor graph is sufficiently large
then the messages entering any given node at message pass-
ing iteration stepl will be independent random variables,
and it can be shown that as the LDPC codeword length
increases, almost all of the corresponding factor graphs will
have sufficiently large diameter [3]. Furthermore these random
variables will be identically distributed if the all zero-codeword
was transmitted. Under such conditions the density evolution
technique can be used to find the probability density of the
outgoing message for the node [3]. In order to avoid numerical
precision problems, we quantize each message and treat the
messages as discrete random variables when performing the
density evolution calculations as described in [5]. The density
update rules at channel state nodesSi’s and codeword bit
nodesXi’s involve the summation of independent random
variables, and thus the resulting output message density isa
convolution of a set of probability mass functions. The density
update rules at a factor node are more involved. In order to
compute the probability of a quantized outgoing message, we
need to sum over the joint probability mass functions (pmf’s)
of all possible combinations of incoming messages multiplied
by the local function that results in that particular output
message. For the check nodesCi’s, an efficient way to do
the density update is given in [5]. We can then summarize
the density update rules for(j, k)-regular LDPC codes on a

two-state block interference channel as follows

pU→S(ξ) = δ

(
ξ − log

p(si = 0)

p(si = 1)

)
(15)

pS→W (ξ|s) = pU→S(ξ) ⊗
h−1⊗

pW→S(ξ|s) (16)

pW→X(ξ|s) =
∑

ξ′,y

f2(ξ′,y)=ξ

pS→W (ξ′|s) · p(y|x = 0, s) (17)

pW→X(ξ) =
∑

s∈{0,1}

pW→X(ξ|s)p(s) (18)

pX→C(ξ) = pW→X(ξ) ⊗

j−1⊗
pC→X(ξ) (19)

pC→X(ξ) = Rk−1 (pX→C(ξ)) (20)

pX→W (ξ) =

j⊗
pC→X(ξ) (21)

pW→S(ξ|s) =
∑

ξ′,y

f1(ξ′,y)=ξ

pX→W (ξ′) · p(y|x = 0, s) (22)

where δ(x) is the dirac delta function,⊗ denotes the

convolution operation,
i⊗

denotes i-fold self convolution,
Rk−1 (pX→C(ξ)) represents the notation for the average
message density obtained by evolving the densitypX→C(ξ)
through a check node of degreek as described in [5]. The
message update rules (12) and (13) are incorporated into (17)
and (22) through the termsf1(ξ

′, y) andf2(ξ
′, y), respectively

defined below

f1(ξ
′, y) = log

∑
x∈{0,1}

p(y|x, s = 0) · eξ′(1−x)

1+eξ′

∑
x∈{0,1}

p(y|x, s = 1) · eξ′(1−x)

1+eξ′

(23)

f2(ξ
′, y) = log

∑
s∈{0,1}

p(y|x = 0, s) · eξ′(1−s)

1+eξ′

∑
s∈{0,1}

p(y|x = 1, s) · eξ′(1−s)

1+eξ′

(24)

Note that the density updates (15)-(22) are performed in the
order given. This corresponds to the message update schedule
described in the last sentence of section II. The probability
P

(l)
e of a bit-to-check node message error at message passing

iteration stepl is given by

P (l)
e =

∑

ξ≤0

p
(l)
X→C(ξ) (25)

By utilizing the density evolution technique the threshold
(ǫthresh

b ), which is defined to be the maximum value ofǫb

for which P
(l)
e converges to zero as the number of iterations

increases, can be numerically evaluated. Note that for regular
LDPC codes,ǫthresh

b will be a function of column and row
weight (j andk) of the parity check matrix. The complexity
of this calculation is independent of the codeword length and
thus this technique is more efficient than simulation for codes
having large codeword lengths. Furthermore the concentration
theorem implies that the bit error probability goes to zero
for almost all regular LDPC codes of which parity check
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matrices have column weightj and row weightk and sufficient
codeword length as the number of message passing iterations
increases providedǫb < ǫthresh

b (j, k).
Next, we present some simulation results along with the

corresponding threshold values computed by density evolution.
The channel considered is a two-state block interference
channel where the first channel state corresponds to the
noiseless BSC with crossover probability 0 and the second
state corresponds to the useless BSC with crossover proba-
bility 1/2. When the receiver has perfect CSI, the two-state
noiseless/useless BSC block interference channel reducesto a
2h-ary erasure channel, and its capacity is given by [19]

CCSI = 1 − ǫb (26)

where ǫb equals the probability that the channel is in the
useless state.

When channel state is unknown to the receiver, the capacity
is given by [19]

CNCSI = (1 − ǫb + ǫb2
−h)−

1

h

[
H2(ǫb − ǫb2

−h) + (ǫb − ǫb2
−h) log2(1 − 2−h)

]
(27)

where

H2(ǫ) = −ǫ log2(ǫ) − (1 − ǫ) log2(1 − ǫ) (28)

As h approaches infinity the channel state can be determined
exactly by the receiver, and thusCNCSI → CCSI ash → ∞

Many practical systems combat channel memory by inter-
leaving the transmitted symbols so that after deinterleaving,
the channel state appears to be independent from symbol to
symbol, i.e.,h = 1. The capacity of the two-state noise-
less/useless BSC channel withh = 1 is given by

Cinterleave= 1 − H2

(ǫb

2

)
(29)

In Fig. 2, Cinterleave, CNCSI (h = 2, 10, 20) and CCSI of
the two-state noiseless/useless BSC channel are shown for
comparison. The gap betweenCNCSI and Cinterleave indicates
the potential gain in performance that can be realized by
estimating the channel state.

We have computed the thresholdǫb values for this two-
state noiseless/useless BSC channel operating at a rate of
1/2 bit per channel use using density evolution under the
following three different conditions: (1) joint channel state
estimation/decoding, (2) no channel state estimation, and(3)
perfect CSI. The results are presented in Table I for rate 1/2
codes together with the maximum achievableǫb as promised
by channel capacity, and theǫb achievable based on simulation
results (Pb ≈ 10−5) using a regular, rate 1/2, LDPC code of
codeword length 4000. As can be seen from the table, the
thresholds of the iterative channel state estimation/decoding
schemes are substantially better than those obtained usinga
decoder that makes no attempt to estimate the channel state.
As the block lengthh increases, received symbols are more
correlated and this correlation can be efficiently exploited by
the joint channel state estimation/decoding receiver. Note that
threshold calculations indicate that the gap betweenCNCSI and
Cinterleavecan be substantially narrowed by using joint channel
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Fig. 2. Cinterleave, CNCSI (h=2,10,20) andCCSI of the two-state noise-
less/useless BSC block interference channel

TABLE I

THRESHOLDS ONǫb OF LDPC WITH RATE 1
2

ON THE TWO-STATE

NOISELESS/USELESSBSC BLOCK INTERFERENCE CHANNEL

Code/Decode Method/Block Length Capacity Threshold Simulation

(3,6)-reg., No State Est.,h = 2 0.220(2) 0.168 0.090
(3,6)-reg., No State Est.,h = 10 0.220(2) 0.168 0.060
(3,6)-reg., Soft Est./Dec.,h = 2 0.252(1) 0.203 0.160
(3,6)-reg., Soft Est./Dec.,h = 10 0.403(1) 0.315 0.223
(3,6)-reg., Perfect CSI,h = 2 0.500(3) 0.429 0.381
(3,6)-reg., Perfect CSI,h = 10 0.500(3) 0.429 0.334
(4,8)-reg., Soft Est./Dec.,h = 10 0.403(1) 0.254 0.170

(1) CNCSI (27), (2) Cinterleave (29), (3) CCSI (26)

state estimation/decoding with LDPC codes. For example,
with h = 10 CNCSI = 0.5 → ǫb = 0.403, Cinterleave =
0.5 → ǫb = 0.22 and (3,6)-regular LDPC (R = 0.5)
→ ǫthresh

b = 0.315. This favorable result is obtained even
though optimization of the node degree sequence of the LDPC
code was not undertaken. By using an irregular LDPC code
with an optimized node degree sequence we expect to see
further improvements. The gaps between the simulation results
and threshold values are due to the use of LDPC codes
with relatively short codeword lengths. By using codes with
sufficiently long codeword lengths, the simulation resultswill
approach the threshold values. In Fig. 3, simulation results are
shown for the(3, 6)-regular LDPC code cases corresponding
to the entries given in Table I. The(3, 6)-regular LDPC code
which we used was designed by David Mackay [21] and has
a codeword length of 4000. It can be seen from the figure
that joint channel state estimation/decoding performs closer
to the system with perfect CSI ash increases. For the case
of no state estimation and perfect CSI, channels with block
lengths of 2 or 10 achieve the same thresholds (see Table
I). The simulation performance for this case (see Fig. 3),
however, depends on the block length, and unlike the case
of joint channel state estimation/decoding, the performance
degrades as the block length increases for a fixed codeword
length. This trend is due to the fact that when the codeword



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2004 105

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

1−ε
b

B
E

R

No state estimation, h = 10
No state estimation, h = 2
Joint est./decoding, h = 2
Joint est./decoding, h = 10
Perfect state information, h = 10
Perfect state information, h = 2

Fig. 3. Simulation performances of a (3,6)-regular LDPC,n = 4000 on the
two-state noiseless/useless BSC block interference channel

length is fixed, the number of independent blocks decreases as
the block length increases. A smaller number of independent
blocks yields a larger probability that an atypically large
number of bad channel states occurs. Thus, a higher decoding
error rate occurs for schemes that do not estimate the channel
state and for schemes with perfect CSI as the block length
increases and the codeword length is held fixed. The situation
is different for joint channel state estimation/decoding,since
increased correlation occurs between received symbols as
the block length increases for a fixed codeword length, and
this correlation can be efficiently exploited by the receiver.
Nevertheless, it is also possible under some situations that
the increased correlation between symbols is insufficient to
compensate for the decreasing number of independent blocks,
and a degradation in performance will result. Note that these
results are only physically meaningful whenh ≪ n. Whenh
becomes an appreciable fraction ofn, outagerates as opposed
to bit-error-rates are the appropriate performance measure.

The most important use of density evolution is to opti-
mize the code degree sequence as well as other decoding
parameters. The computational complexity of the density
evolution technique does not depend on the codeword length,
and thus it provides a more efficient way to optimize the
code degree sequence than using simulations. In Fig. 4, we
compare the thresholds and simulation performances of (3,6)-
regular and (4,8)-regular LDPC when employing joint channel
state estimation/decoding over a channel with block length
10. The two codes have the same rate but the (3,6)-regular
code outperforms the (4,8)-regular code. These results coincide
with those predicted by threshold values obtained by density
evolution and given in Table I. Also illustrated in the figure
is the fact that code performance gets closer to its threshold
value as the codeword length increases.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10
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1−ε
b
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E

R

↓ ↓

( 0.685 ) ( 0.746 )

Simulation (4,8) LDPC, n = 4000
Simulation (3,6) LDPC, n = 4000
Simulation (3,6) LDPC, n = 8000
Threshold (4,8) LDPC
Threshold (3,6) LDPC

Fig. 4. Performance comparison between (3,6)-regular LDPCs,n =
4000, 8000 and a (4,8)-regular LDPC,n = 4000 on the two-state noise-
less/useless BSC block interference channel withh = 10 when employing
joint channel state estimation and decoding

IV. M AXIMUM L IKELIHOOD PERFORMANCE OFLDPC
OVER THE BLOCK INTERFERENCECHANNEL

In this section, we will derive information theoretic bounds
for the performance of an optimal maximum likelihood re-
ceiver on the two-state noiseless/useless BSC block inter-
ference channel. The bounds will be derived based on the
assumption that the code is restricted to be in an ensemble of
(j, k)-regular LDPC codes. The quantity of interest is theerror
exponentof the code family. The error exponent describes the
rate at which the probability of codeword error of the best
sequence of codes in the ensemble decreases as the codeword
length increases. When the code ensemble is enlarged to
include all possible codes (i.e., not just LDPC codes), this
error exponentE(R) will dependonly on the channel and will
be referred to aschannel error exponent. For a(j, k)-regular
LDPC ensemble, we will define the LDPC error exponent as

E(j, k) = lim
n→∞

sup

[
−

1

n
log Popt(j, k, n)

]
(30)

where Popt(j, k, n) is the codeword error probability of the
best (j, k)-regular LDPC code (i.e., the(j, k)-regular LDPC
code with the lowest probability of codeword error assuming
maximum likelihood decoding) of codeword lengthn.

In [19], an argument has been made that the block interfer-
ence channel can be treated as a memoryless channel where
each block ofh symbols from the original channel forms a
single input of the corresponding super channel. Thus, the
coding theorem and all the bounding techniques developed
for memoryless channels can be applied directly to the block
interference channel with and without perfect CSI. Evaluating
these bounds, however, is usually quite involved due to the size
of the input and output alphabets, which grow exponentially
with the hop lengthh. The computation is not particularly
burdensome for the case of the two-state noiseless/useless
BSC block interference channel. Using standard techniques
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Fig. 5. Lower bound on the channel error exponent of the two-state
noiseless/useless BSC block interference channel,ǫb = 0.2 when channel
state is known
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Fig. 6. Lower bound on the channel error exponent of the two-state
noiseless/useless BSC block interference channel,ǫb = 0.2 when channel
state is unknown

[22][23], lower bounds (i.e., the random coding channel ex-
ponentEL(R)) on the channel error exponent can be derived.
These bounds are shown in Fig. 5 and 6 for the cases where
the channel state is known and unknown to the receiver,
respectively.

As illustrated in the figures, the lower bound on the channel
error exponent at any rate is monotonically decreasing withthe
hop length when the channel state is known to the receiver.
This result provides some theoretical justification for the
increase in error probability observed in section III for the
channel with known CSI as the hop length increases. The
monotonicity described above is not present at all rates for
the case when channel state is unknown to the receiver. In
fact, the hop length at which the lower bound on the channel
error exponent is maximum varies as a function of rate. This
observation illustrates the tradeoff that exists between the
number of independent hops and the ability of the receiver to
estimate the channel state as previously described. A proofof

the monotonicity of the channel error exponent when channel
state is known to the receiver together with a proof of existence
of an optimal hop length when channel state is unknown to
the receiver are given in [11] for a general class of block
interference channels.

A general case analysis of the LDPC code error exponent
for the block interference channel is usually quite involved,
however, the derivation can be simplified for some special
cases such as the two-state noiseless/useless BSC channel
described in section II. The basic bounding technique that we
apply here was developed by Gallager [1] and Fano [24]. We
have made some modifications to extend the technique to the
block interference channel.

In [19], it was argued that the block interference channel
can be treated as a memoryless channel where each block ofh
symbols from the original channel forms a single input of the
corresponding super channel. Letx0 = x00, x10, ..., x(n′−1)0

be the codeword of lengthn transmitted over the super chan-
nel, and lety = y0, y2, ..., yn′−1 be the corresponding received
sequence, wheren′ = n/h is the number of times the channel
is used independently during transmission and we assumeh
divides n. The input symbolxi0 and the output symbolyi

are letters of the input and output alphabet of the memoryless
super channel that represents the block interference channel.
Let the other codewords bexj = x0j , x1j , ..., x(n′−1)j where
j = 1, 2, ...,M −1 andM is the number of codewords. Using
maximum-likelihood decoding, a decoding error occurs iff (we
consider a “tie” an error)

n′−1∑

i=0

log P (yi|xij) ≥

n′−1∑

i=0

log P (yi|xi0) (31)

for somej 6= 0. We define the symbol discrepancy between
input symbolxij and output symbolyi as

d(xij , yi) = log
1

P (yi|xij)
(32)

and the sequence discrepancy betweenx andy as

D(xj ,y) =

n′−1∑

i=0

d(xij , yi) (33)

By applying the union bound to (31), the codeword error
probability can be bounded by

Pe ≤ Pr





M−1⋃

j=1

[D(xj ,y) ≤ D(x0,y)]



 (34)

≤ Pr[D(x0,y) > nδ]

+
M−1∑

j=1

Pr[D(x0,y) ≤ nδ; D(xj ,y) ≤ D(x0,y)]

(35)

Invoking the Chernoff bound, we get, for anyz ≥ 0

Pr[D(x0,y) > nδ] ≤




n′−1∏

i=0

φi(z)


 exp(−nzδ) (36)
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whereφi(z) is the moment generating function defined by

φi(z) =
∑

yi

P (yi|xi0)
1−z (37)

By symmetry, it can be verified thatφi(z) does not depend
on the value ofxi0. Thus the value of the bound is the same
for any transmitted codewordx0 and

n′−1∏

i=0

φi(z) = [g(z)]n
′

(38)

where

φi(z) = g(z) ≡
∑

yi

p(yi|xi0)
1−z (39)

for any value ofxi0

In order to bound the second term on the right hand side
of (35), we again invoke the Chernoff bound. Letvi and wi

be n′ pairs of random variables with joint probability mass
function Pi(vi, wi) and joint moment generating function

hi(r, ξ) =
∑

vi

∑

wi

exp(rvi + ξwi) Pi(vi, wi) (40)

Let V andW each be sums of independent random variables
as defined below

V =

n′−1∑

i=0

vi , W =

n′−1∑

i=0

wi (41)

we have

Pr(V ≤ nṽ; W ≤ nw̃) ≤




n′−1∏

i=0

hi(r, ξ)


 exp [−n(rṽ + ξw̃)]

(42)
for any r ≤ 0, ξ ≤ 0. It follows from (40) with

vi = d(xi0, yi) , wi = d(xij , yi) − d(xi0, yi) (43)

that

hi(r, ξ) =
∑

yi

{
P 1−r(yi|xi0)

[
P (yi|xi0)

P (yi|xij)

]ξ
}

(44)

If xij = xi0, then (44) becomes

hi(r, ξ) = g(r) =
∑

yi

exp [rd(xi0, yi)] P (yi|xi0) (45)

whereg(r) is as defined in (39). By symmetry, one can verify
thathi(r, ξ) does not depend on the particularxi0 or xij . Thus
without loss of generality we can assume thatxi0 = [0 . . . 0]
and xij = [1 . . . 1]. With r held fixed,hi(r, ξ) given by (44)
achieves its minimum value whenξ = r−1

2 , and thus for any
xij 6= xi0,

h(r) ≡ h

(
r,

r − 1

2

)
(46)

=
∑

yi

[P (yi|x = [0 . . . 0])P (yi|x = [1 . . . 1])]
1−r
2 (47)

Hence, ifx0 andxj differ in m symbols and agree inn′ −m
symbols, we will have

Pr [D(xj ,y) ≤ nδ; D(xj ,y) ≤ D(x0,y)]

≤ [h(r)]m[g(r)]n
′−me−nrδ (48)

for any r ≤ 0. We will assume without loss of generality
that the all 0 codeword is transmitted asx0, and thatxj

is a codeword of some weightl 6= 0. We will evaluate the
error probability bound (48) by using the weight spectrum of
the code. In order to do so, we need to establish the relation
between the binary weightl of the codeword and the number
of super symbolsm wherex0 andxj differ. Let Pbox(l,m, n)
denote the probability that any randomly chosen codeword of
weight l and lengthn will differ from the all zero codeword in
m super symbol positions. The symbol pairsxij andxi0 are
identical when they agree in every one ofh binary positions in
the super symbol. The LDPC code ensemble to be considered
includes all possible permutations of the codeword bits. This
implies that, given a codeword of weightl in some randomly
chosen code from the LDPC code ensemble, the ones are
equally likely to be in any of then positions. Thus computing
Pbox(l,m, n) is equivalent to placingl indistinguishable balls
at random inton′ = n/h distinguishable boxes, each box
having a capacity to holdh balls, and asking for the probability
Pbox(l,m, n) thatm of the boxes contain at least one ball. For
l, m and h fixed, an exponentially tight bound inn on the
probability can be given by

(
n′

m

) [
min

{(
h

⌊ l
m

⌋

)
,
(

h
⌈ l

m
⌉

)}]m

(
n
l

) ≤ Pbox(l,m, n) ≤

(
n′

m

)(
mh
l

)
(
n
l

)

(49)
for m ≥ ⌈ l

h⌉ and 0 otherwise. The upper bound in (49) follows
from the fact that the number of combinations ofm nonempty
boxes equals the number of ways to choosem boxes out of
n′ boxes times the number of ways to placel balls in the
mh spaces of thosem boxes with at least one ball per box.
The former quantity is given by

(
n′

m

)
while the latter is upper

bounded by
(
mh
l

)
. The lower bound in (49) follows from the

fact that one way to fill them nonempty boxes is to fill each
one of them with an equal (or approximately equal) number
of balls.

Invoking the well-known bound on the binomial coefficients
given in [1]

1√
2πnǫ(1 − ǫ)

exp

[
nHe(ǫ) −

1

12nǫ(1 − ǫ)

]

<

(
n

nǫ

)
<

1√
2πnǫ(1 − ǫ)

exp [nHe(ǫ)] (50)

wherenǫ is an integer less than or equal ton and

He(ǫ) = −ǫ log ǫ − (1 − ǫ) log(1 − ǫ) (51)

is the entropy function. We have

Pbox(l,m, n) ≤ Cb(l,m, n)en bB(l,m,n) (52)
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where

B̂(l,m, n) =
1

h
He

(m

n′

)
+

mh

n
He

(
l

mh

)
− He

(
l

n

)

(53)

Cb(l,m, n) =

√
1 − l

n

2πm
(
1 − m

n′

) (
1 − l

mh

) exp

[
1

12l(1 − l
n )

]

(54)

Let N(l) be the number of codewords at a distancel from x0.
Thus from (48), we have
M−1∑

j=1

Pr[D(x0,y) ≤ nδ; D(xj ,y) ≤ D(x0,y)] ≤

n∑

l=0

N(l)e−nrδ

min(n′,l)∑

m=⌈l/h⌉

[h(r)]m[g(r)]n
′−mPbox(l,m, n) (55)

Let N(l) be the average number of codewords of weight
l in some ensemble of linear codes. The ensemble average
probability of decoding error is then given by (35),(36),(39)
and (55) as

Pe ≤ g(z)n′

e−nzδ

+

n∑

l=0

N(l)e−nrδ

min(n′,l)∑

m=⌈l/h⌉

[h(r)]m[g(r)]n
′−mPbox(l,m, n)

(56)

for any z ≥ 0, r ≤ 0
In [1][25], N(l) of a (j, k)-regular LDPC ensemble has been

shown to be bounded by

N(l) ≤ C(λ, n)enB(λ) (57)

whereλ = l/n and

B(λ) = (1 − j)He(λ)

+
j

k
[µ(γ) + (k − 1) log(2)] − jγλ (58)

C(λ, n) = [2πnλ(1 − λ)]
j−1
2 exp

j − 1

12nλ(1 − λ)
(59)

µ(γ) = log
{
2−k

[
(1 + eγ)k + (1 − eγ)k

]}
(60)

whereγ, the parameter to optimize the bound, is selected such
that λ = µ′(γ)

k .
Letting

C̃n ≡ max
λ

C(λ, n) , Ĉn ≡ max
l,m

Cb(l,m, n) (61)

rearranging (56), and bounding the summation by the number
of terms in the sum times the value of the maximum term, we
get

Pe ≤ exp

{
n

[
log g(z)

h
− zδ

]}
+ n′nC̃nĈn max

λ

exp

{
n

[
B(λ) − rδ + max

m

(
m

n
log[h(r)]

+
n′ − m

n
log[g(r)] + B̂(λn,m, n)

)]}
(62)
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Fig. 7. Lower bound on the error exponent of(j, k)-regular LDPC over
the two-state noiseless/useless BSC block interference channel withh = 10
when channel state is known andǫb = 0.1

For a givenz, r and λ, we select the valueδ that makes
the two exponents in (62) equal. With this choice ofδ, (62)
becomes

Pe ≤ (1 + n′nC̃nĈn) exp{−n[min
λ

E(z, r, λ)]} (63)

where

E(z, r, λ) =
r

(z − r)h
log[g(z)]−

z

z − r

[
B(λ)

+max
m

{
m

n
log[h(r)] +

n′ − m

n
log[g(r)] + B̂(λn,m, n)

} ]

(64)
By (30), we have

E(j, k) ≥ max
z≥0,r≤0

min
λ

E(z, r, λ) (65)

Optimizing (65) with respect tor, z and λ yields a lower
bound on the error exponent of a random ensemble of(j, k)-
regular LDPC codes used over the two-state noiseless/useless
BSC block interference channel. We evaluated this bound
for some regular LDPC code ensembles with variable node
degreesj = 3, 4, 5 and 6. The LDPC code ensemble weight
distribution exponentB(λ) used in (64) is given by (58),
however, we expurgated from the ensemble all codes with
minimum fractional weightλ satisfying B(λ) < 0. This
expurgation will have negligible effect since, asymptotically,
almost all codes in the ensemble belong to this expurgated
ensemble. The results along with the lower bounds on the
channel error exponentEL(R) [22][23] are shown in Figs.
7 and 8 for the cases when the channel state is known
and unknown, respectively. The critical rate [22],Rcr, of
the channels has also been computed and is indicated on
these figures. The boundEL(R) is known to be tight, i.e.,
EL(R) = E(R) for R ≥ Rcr [22].

As can be seen, the lower bound on the error exponent
of the regular LDPC code ensemble approaches the random
coding channel exponent bound,EL(R), as the node degree
j increases for the case whereh = 10 and ǫb = 0.1. Similar
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Fig. 8. Lower bound on the error exponent of(j, k)-regular LDPC over
the two-state noiseless/useless BSC block interference channel withh = 10
when channel state is unknown andǫb = 0.1

results are obtained for the case whenh = 2, 10, 20 and
ǫb = 0.1, 0.3, 0.5, 0.7, 0.9. Also illustrated in the figure
is the fact that the difference is larger at higher rates. This
increase, however, may depend more on the tightness of the
bound at high rates rather than on the code itself.

V. CONCLUSION

In this paper we consider the two-state noiseless/useless
BSC block interference channel. When the channel is in the
noiseless state the BSC crossover probability is zero whileit is
1/2 in the useless state. Each block ofh consecutive channel
input bits shares the same channel state, which is selected
independently and at random from block to block according to
a known prior distribution. Communication performance over
this channel is analyzed when regular LDPC codes are used
and the receiver implements iterative sum-product decoding
either with or without joint channel state estimation. The
threshold performance of the receiver is evaluated using den-
sity evolution and the results are compared with the channel
capacity and bit-error-rate simulations obtained using LDPC
codes of codeword length 4000. The threshold and simulation
results indicate that substantial improvements in performance
can be realized by using joint channel state estimation. Finally
lower bounds are derived for the error exponent when LDPC
codes are used. These lower bounds are shown to approach the
random coding channel error exponent bound, in a number of
cases, as the degree of the LDPC bit nodes increases.
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