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Joint Channel State Estimation and Decoding of
Low-Density Parity-Check Codes on the Two-State
Noiseless/Useless BSC Block Interference Channg

Wongkot Vijacksungsithi and Kim A. Winick

Abstract—We apply the density evolution technique to deter- graph representation of the code does not contain any cycles
mine the thresholds of low-density parity-check codes when the of |ength less than the number of iterations, and a method to
sum-product algorithm is employed to perform joint channel —.qnstryct LDPC codes whose bipartite graph represengation

state estimation and decoding. The channel considered is the two- bit | di t Iso d ibed. In 1998
state noiseless/useless BSC block interference channel, where glave arbitrary large diameters was aiso described. In !

block of h consecutive symbols shares the same channel statd-Uby et al. [2] generalized Gallager’s result to includegular

which is either a noiseless BSC (crossover probability 0) or LDPC codes and showed that, for a randomly chosen code,
a useless BSC (crossover probability 1/2). The channel statethe actual fraction of decoded bit errors at iteration step
is selected independently and at random from block to block I converges with probability 1 to the expected number of

according to a known prior distribution. The threshold of the .
joint channel state estimation/decoding scheme when utilized over decoded bit errors as the codeword lengih,of the code

such a channel is shown to be greatly superior to that of a approacheso. This result is known as th€oncentration The-
decoder that makes no attempt to estimate the channel state. oremand the maximum value of the chanmalisefor which
These results are also confirmed by simulation. The maximum the expected fraction of incorrectly decoded codeword bits
likelihood performance of LDPC codes when used over this .,verges to zero as the number of message passing iteration

channel is investigated. Lower bounds on the error exponents . . .
of regular LDPC codes, when maximum likelihood decoded, are 'NCT€aSES 1S called thtreshold Subsequently, Richardson

shown to be close to the random coding channel error exponent €t al. [3] extended the result to message passing algorithms

when the LDPC variable node degree is high. (such as belief propagation or sum-product) having infinite
Index Terms—LDPC codes, iterative decoding, channel state sized alphabets. Richardson also proposed a techniquediam
estimation, density evolution, error exponent. Density Evolution to numerically compute thresholds. This

technique has been successfully employed to find codes that
have performance close to channel capacity [4][5].

I. INTRODUCTION i ! . .
In this study, we apply the density evolution technique

I N 1962, R. Gallager [1] proposed a class of codes, knowg inyestigate the performance of LDPC when the iterative
asLow-Density Parity-Check (LDPC) Codethat held the \e5sage passing algorithm is used joint channel state

promise of achieving good performance while using low comsstimation/decoding over the two-state, noiseless/ss@&C,
plexity iterative decoding algorithms. To investigate We&r- 1o\ interference channel. Related results have also been
formance of LDPC codes when optimally decoded, Gallagggscribed in a recent conference presentation [6]. The mes-

derived an upper bound on the error probability of maximund,ge passing algorithm is derived based on a factor graph
likelihood decoding that is applicable to any specific Coqpepresentation suggested by Wiberg [7] and first implentente
or to the average performance of a code ensemble usedyn\yorthen [8][9][10][11] for this application. The threskd
bln.ary-m_put. symmetric memoryless channels providedttiat ¢ e joint channel state estimation/decoding scheme is nu
weight distributions of the code or code ensemble are knoWRe jcally evaluated by density evolution and compared with
The maximum likelihood decoder, however, is prohibitively,nacity. These results are also confirmed by simulatiod, an
too complex to implement, and in practice, LDPC decodeypsiantial improvements in performance are demonstisted
usually employ suboptimal iterative algorithms that can-pr using this joint channel state estimation/decoding apgtoa
vide good empirical performance while having a complexitgin|ly, the maximum likelihood performance of LDPC codes
that grows only linearly with the codeword length. In ordejisey oyer a block interference channel is investigated. By a
to ar_lalyze the behavior of suboptlma_\l iterative decodi ing the bounding technique originally proposed by Ggeia
algorithms, Gallager proposed a technique that keeps rg§f or pinary input symmetric memoryless channels, a lower
of the probability of passing an incorrect message along ggng on the error exponent for LDPC codes used over the

edge of the bipartite graph representation of the code dt €3¢, _state noiseless/useless BSC block interference ehasin
iteration step. Gallager's analysis assumed that the ®ar yerived from the average weight distribution spectra of¢he
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that such an approach used for the Gilbert-Elliott channelock of h consecutive transmitted channel symbols. This state
could outperform receiver implementations that make no a$ selected at random, independently from block to block
tempt to estimate the channel state. Eckford et al. [14]1B3] and independently from the transmitted symbol sequence,
in a series of conference papers extended these resulthéforaccording to some known prior distribution. This channel
Gilbert-Elliott channel) by computing thresholds of thénfo model is a good representation for a frequency hopped system
estimation/decoding algorithms using density evolution.  operating in the presence of partial band jamming. We will

The organization of this paper is as follows. In section Ifurther restrict our analysis to two-state, binary-inp&cnels,
we present the factor graph representation of LDPC codasd in particular, to the two-state, noiseless/usesleS€E.. Bor
when used over block interference channel along with tleach transmitted bit, this channel behaves as a BSC whose
corresponding sum-product algorithm for joint channetestacrossover probability is either zero (noiseless state) f&
estimation and decoding. In section Ill, we describe thesifgn (useless state). The prior probability that the channet ithe
evolution process for the algorithms presented in section Useless state will be denoted s
Threshold values computed using density evolution along wi Let x be a codeword of a binary LDPC codg of length
simulation results are also presented. In section IV, alowe and rateR, lety = {y:}, t = 0,1,...,n — 1 be the
bound on the error exponent of LDPC codes when useeceived sequence resulting from transmittirg = {x;},
over the two-state BSC useless/noiseless block intederen = 0,1,...,n — 1 over the block interference channel and
channel, based on maximum likelihood decoding, is derivéet s; be the channel state correspondingitbblock of A
and evaluated. Finally, our conclusions are given in sectio symbols. Assuming that all codewords are equiprobable,

the maximum likelihood (ML) bit decoding rule is given by
I1. JOINT CHANNEL STATE ESTIMATION AND DECODING

OF LDPC CODES ONBLOCK INTERFERENCECHANNELS Z; = argmax > Pr(ylx) 2
A binary low-density parity-check (LDPC) code is a binary x'€Cial=m;
linear error correcting code specified by a parity-checkrixat = argmax Z I[x" € C]Pr(y|x’) (3)
H whose column and row weights are a small fraction of b oxe{0,1}n il =x;

the codeword length. If the parity-check matrix has cortsta\pv eren is the length of the code ant] is the indicator

row an.d c_olumn weight, the code is said t(.) be regular, afGhction which equals 1 if the statementis true and is 0
otherwise irregular. A regular LDPC code will be denoted bXtherwise We have

the triplet (n, j, k) wheren is the codeword lengthj is the
column weight (also called the variable node degree) /and Z I[x" € C]Pr(y[x’)
is the row weight. The ratel, of such a code satisfies the x/c{0,1}7:2/ =,
conditonR > 1 — j/k. _

A factor graphrepresentation [17] is a bipartite graph that™ Z
expresses the structure of the factorization of a globattfan

I[x' € C]> p(s,ylx) (4)

x'e{0,1}":xl=x;

as the product of local functions. A factor graph has two $ype= Z I[x" e C] Zp(y|s,x’)p(s\x’) (5)
of nodes, there is &ariable nodefor each variabler; and a x'e{0,1} "z} =x; s
factor nodefor each local functionf;. An edge connecting n—1
variable node ofz; to factor node off; if and only if z; is = Z Zl[x’ eC]- H p(yt|sL%J,'£;)
an argument off;. x'€{0,1}n:z)=x; s t=0
Given a functiong(x1,...,z,), we are often interested in [n1-1
computing themarginal functionsg;(z;). For eacha € A;, ) H p(s;) (6)
the value ofg;(a) is obtained by summing the value of =0
g(z1,...,z,) over all possible values of its variables other mel
than z;, with 2; = a. For example, if we have some real- — Z Z H I[x’ satisfies thet" parity check
valued functiong(z1, z2, x3, z4), then X' €{0,real =z, 5 k=0
g92(a) = Z Z Z g(z1,22 = a,z3,24) (1) nt Mt
T1€A1 T3E€EA3 T4E€A, : H p(ytISL%j ) l‘;) : H p(Sj) (7)
The operation described by (1) is called tharginalization =0 =0
of the global functiong(x1, ..., x,) with respect to variable wherem is the number of rows in the parity-check matrix

x2. Thesum-producglgorithm is an efficient message passingf C, i.e. m = n(l — R). Eq. (6) follows from (5) by
algorithm for computing these marginal functions. The sunmvoking the independence of the state from the transmitted
product algorithm is described in details in [7][17][18]. symbols and from block to block. Note that (7) represents
In this paper we will consider thelock interference channel the marginalization of a global function that can be faafore
as described by McEliece et al. [19]. For each transmittdthe corresponding factor graph follows immediately and is
symbol x;, this channel is completely characterized by itshown in Fig. 1 for the case of a (2,3)-regular LDPC code
channel transition probabilitieg(y:|x:,s) where y, is the with codeword length 9 and block length = 3. Variable
corresponding channel output andlenotes the channel statenodes are shown as filled circles and factor nodes are shown
The channel is assumed to remain in the same state for eashopen circles. Here§; is the variable node representing
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the channel stateX; is the variable node representing each « Factor-to-variable node message update

bit in the codeword(; is the factor node representing each

parity check, i.eC; corresponds td[x’ satisfies th&*" parity

check equation]lJ; is the factor node corresponding to the p(s; =0)

prior probability distributions on the channel states afid MU, —s, = 10%@ (11)
is the factor node that represemg;|s, . , x}). Note that we ’

suppress the variable nodes for the received syniband H WimSiiy =
incorpor his information directly into n i (-2 nx;—w;
corporate this information directly into nod#; ) p(yi|xi7sL%J —0)-¢ B
:riE{O,l}
log (=) px, W, (12)
> pilwi sy =1) Yo
2:6{0,1} h +e" i i
MW, —X; =
(A=s, 3 Jprs . W,
Led” 21—
Z p(yl|xl = O»SL%J) - & 7S, :wi
s i €{01} ' 14e !
log — (== prs , —w
Ll L£) i
[ h
Z p(ydﬂ?,‘ = lasL%J) : X r—
s 1, €{0,1} 1+e L®J
h
(13)
HCi—X,; =
2 tanh~! [] tann (‘LX’CT*C) (14)
Fig. 1. Factor graph representing (2,3)-regular LDPC cod the block X1 eNe(Ci)\ X

interference channel with = 3 andm =6

We can apply the sum-product algorithm to approximate | the case of the joint channel state estimation and de-
the likelihood function of each codeword bit as described %ding p(s;) is the prior probability of the channel state.
(4). In the sum-product algorithm, the message sent along af this prior information is not available, all channel st
edge connected t&; at message-passing cydeequals or 416 assumed equiprobable. In the case when channel state
approximates (depending on whether the graph has cycl@s)known to the receiver (i.e. perfect channel state side

Fhe a p(.)S'[eI‘IOI'I' probeblllty of bit;; conditioned on all the jnformation (CSI)),p(s;) becomes an indicator function with
information ava|lab!e in the subgraph that' contrlbutesrmt p(si) = 1if s; is the channel state of bloakand 0 otherwise.
message computation. The message consists of two a pastefigy poth cases, the message update in (11) needs to be done
probabilities P for z; = 0 and Py for z; = 1. It will be 4y at the initialization and no further update is requiridte
more convenient to represent these two numbers, end hepes there is no message update frénto U;, because each

the message, by the single quantity(F,/P). This will be  noqe (7, has only one edge, and according to the sum-product
referred to as the log-likelihood ratios (LLRs) represénta  gigorithm, the message it receives on that single edge tanno
If the channel possesses more than 2 states, it is not p@ssggg used to calculate an updated message for that edge.

to also use an LLR message representation along edges _ _

(SL%J ,W;) and(U;, S;). Here, however, we will only consider The messages leaving each node are updated using (8)-(14)
the Case when the channel has 2 states, labeled 0 and 1. #fOrding to a schedule. When the graph has cycles, the result
assumption enables us to also pass the state message de a SREined from any schedule is just an approximation of the
number in an LLR representation along each edge connecfi§fired marginals and there is no general rule for optimal
to a state node;. The sum-product message update rules f_gphedulmg. A number of scheduling methods have been used

a two-state channel when all messages are in an LLR fornf3gluding flooding and sequential. Wiffooding schedulinga
can be explicitly written as follows new message is passed along each edge in the graph in both

directions in parallel during each message passing iterati

« Variable-to-factor node message update and message passing is stopped after some fixed number

_ of iterations are performed or when some other specified
h iz 2 conditions are satisfied. In sequential scheduling the siode
> WS (8) are partitioned into disjoint sets. The message passingris d
W, ENe(S 1 )\W; " within a set on a set by set basis according to some specified
" order. When a set of nodes is scheduled to be updated, all
HX,—w, = Z HCj—X; (9  nodes in that set are updated in parallel. In the work redorte
C;eNe(Xs) here, we employ sequential scheduling with updates pegdrm
X, —C; = HW,—X; + Z HCp—X; (10) in the fOHOWing Or(-“ler:U'SL%J —Wir HW; =X BX;—Cjy HCj— X

CreNe(X:)\C,; X Wi Wi 1 s S| =W and so on.
h h
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I1l. PERFORMANCE OFLDPC CODESEVALUATED BY two-state block interference channel as follows
DENSITY EVOLUTION ON THE BLOCK INTERFERENCE
CHANNEL
p(si=0
| | - poos®) = b (¢ 1os 2= a5)
It is shown in [3] that when a binary-input memoryless pisi =

channel and message passing algorithm satisfies a certain se hl
of symmetry conditions then the codeword bit positions that?s—w (€]s) = pu—s(€) ® ®pW—>S(§|S) (16)
are decoded in error for a fi_xed chan_nel reali_zation will noty, .« (¢]s) = Z ps—w(€]s) - plylz = 0,5) (17)
depend on which codeword is transmitted. This result can be P
extended to include the joint channel state estimationdieg f2(8"w)=¢
algorithm given by (8)-(14) when used over the two-state, pw_x(€) = > pw_x(&ls)p(s) (18)
noiseless/useless BSC, block interference channel [2Q]s,T s€{0,1}
when evaluating bit error rate performance, we can assume j—1
without loss of generality that the all zero codeword is px -(¢) = pw_x()® ®pcﬂx(§) (19)
transmitted. _ b1
It is shown in [3] that if we pick a code at random with equal po-x() = Rj (Px—c(€)) (20)
robability from an LDPC code ensemble, then the fraction of
P Y px—w(®) = Qpo-x(©) (21)

codeword bits decoded in error with sum-product decoding on
a memoryless channel will converge with probability 1 to the py,_.s(£]s) = Z px—wi(&) - plylr =0,s) (22)
probability that a message error occurs along any specified ey

directed edge leaving a codeword bit node and terminating
on a check node. Assuming that the all zero codeword wahere §(x) is the dirac delta function,® denotes the

transmitted, a message error occurs when the messagecgﬂvolution 0 eration® denotes i-fold self convolution
LLR format) leaving a codeword bit node is negative. Th P ' ’

. k=1 N represents the notation for the average
the average bit-error-rate (BER) performance of the LDPmessa(lg)ef dgags)izy ot?tained by evolving the dengity. c(¢) 9
code ensemble, when used with sum-product decoding ovet a ¢

. rough a check node of degréeas described in [5]. The
memoryless channel, can be found once the probability ensi ; .
. : : message update rules (12) and (13) are incorporated injo (17
of a message leaving a codeword bit node is known. This

- / !, H
result, known as the concentration theorem, can be exten 4l (22) through the termf (¢, y) and f2(¢', ), respectively

[20] to the class of block interference channels with finittaaee ined below

F1(E =€

block lengthk by using a slightly modified version of the edge S plylz,s =0)- 85111;)
exposure martingale argument given in [3] for memoryless Ay = 1 z€{0,1} (23)
channels. ey 8 S plylz,s=1)- 0)

If the diameter of the factor graph is sufficiently large z€{0,1} e
then the messages entering any given node at message pass- S plylz =0,s)- s€’<1*j>
ing iteration stepl will be independent random variables, , se{0,1} ’ Ldet
and it can be shown that as the LDPC codeword length fa(€y) = log (24)

. ! : - — 1 . e&'(l—/S)
increases, almost all of the corresponding factor graptis wi se%):l}p(yh ,5) 1+ef

have sufficiently large diameter [3]. Furthermore thes&oam ] .
variables will be identically distributed if the all zerodeword NOte that the density updates (15)-(22) are performed in the

was transmitted. Under such conditions the density exaiutiOrder given. This corresponds to the message update sehedul
technique can be used to find the probability density of trq(%gcrlbed in the last sentence of section II. The probybmt.
outgoing message for the node [3]. In order to avoid numkrick: ~ Of a bit-to-check node message error at message passing
precision problems, we quantize each message and treatiigation stepl is given by

messages as'dlscrete rgndom varlablgs when performmg the Pe(l) _ Zp()l()ﬂC(g) (25)
density evolution calculations as described in [5]. Thesitgn

update rules at channel state nodgs and codeword bit
nodes X;’s involve the summation of independent randorBy utilizing the density evolution technique the threshold
variables, and thus the resulting output message densiy i§"), which is defined to be the maximum value of
convolution of a set of probability mass functions. The dgns for which rY converges to zero as the number of iterations
update rules at a factor node are more involved. In order itcreases, can be numerically evaluated. Note that folaegu
compute the probability of a quantized outgoing message, WBPC codes,e{"s" will be a function of column and row
need to sum over the joint probability mass functions (pjnf'sveight (j and k) of the parity check matrix. The complexity
of all possible combinations of incoming messages mudigoli of this calculation is independent of the codeword lengtt an
by the local function that results in that particular outpuhus this technique is more efficient than simulation fore=od
message. For the check nod€ss, an efficient way to do having large codeword lengths. Furthermore the concémtrat
the density update is given in [5]. We can then summarizeeorem implies that the bit error probability goes to zero
the density update rules fdy, k)-regular LDPC codes on afor almost all regular LDPC codes of which parity check

£€<0
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1

matrices have column weightand row weight and sufficient
codeword length as the number of message passing iteratio os/|
increases provided, < el"es(j, k).

Next, we present some simulation results along with the
corresponding threshold values computed by density deolut o7t 1
The channel considered is a two-state block interferencéo_si g |
channel where the first channel state corresponds to tfg
noiseless BSC with crossover probability 0 and the secons
state corresponds to the useless BSC with crossover protg | i
bility 1/2. When the receiver has perfect CSlI, the two-state
noiseless/useless BSC block interference channel redoges  °* i
2"-ary erasure channel, and its capacity is given by [19] 02} i

Cesi=1—¢ (26) 01l i

interleave
nesr 172 i
sy =10
nesr 1= 20

c
c
c
c
CCSI

O x4 0<

05 : 8

where ¢, equals the probability that the channel is in the 0 2 os 04 o5 o5 o7 08 oo 1
useless state. i

When channel state is unknown to the receiver, the capacit ,
FIg. 2. Cinterleave Cncsi (h=2,10,20) andCcg of the two-state noise-

is given by [19] less/useless BSC block interference channel
Cnesi = (1 — €, + € 27k
Ci (1—e+e27™") TABLE |
7 [Ha(ep — e27") + (e — €527 ") logy (1 — 27™)] (27) THRESHOLDS ONe, OF LDPC WITH RATE 1 ON THE TWO-STATE
NOISELESYUSELESSBSCBLOCK INTERFERENCE CHANNEL
where [ Code/Decode Method/Block Length Capacity | Threshold [ Simulation |
. (3,6)-reg., No State Esth = 2 0.220® 0.168 0.090
Hy(e) = —elogy(€) — (1 —€)logy(1 —¢) (28) (3,6)-reg., No State Esth = 10 0.220 0.168 0.060
e . 6)-reg., Soft Est./Dech = 2 02521 0.203 0.160
As h approaches mﬁmty the channel state can be determine ,6;463” Soft Est/Dech — 10 0403 | 0315 0.223
exactly by the receiver, and thd$cs) — Ccsi ash — oo (3,6)-reg., Perfect CSh, = 2 0.500®) 0.429 0.381
Many practical systems combat channel memory by inter{3.6)-reg., Perfect CSh =10 0500 | 0429 0.334
(4,8)-reg., Soft Est./Dech = 10 0.403V) 0.254 0.170

leaving the transmitted symbols so that after deintertegvi
the channel state appears to be independent from symbol to
symbol, i.e.,h = 1. The capacity of the two-state noise-
less/useless BSC channel with= 1 is given by

M Cnesi (27), @) Cinterteave (29), @) Ccsi (26)

Cinterieave= 1 — Ho (ib) (29) state estimation/decoding with LDPC codes. For example,
2 with b = 10 Oncsi = 0.5 — ¢ = 0.403, Cinterleave =
In Fig. 2, Cinterleave Cncst (B = 2,10,20) and Ccs) of 0.5 — ¢ = 0.22 and (3,6)-regular LDPC K = 0.5)
the two-state noiseless/useless BSC channel are shown -ferel™sh = (.315. This favorable result is obtained even
comparison. The gap betwe&l\cs and Cinerieave indicates though optimization of the node degree sequence of the LDPC
the potential gain in performance that can be realized lepde was not undertaken. By using an irregular LDPC code
estimating the channel state. with an optimized node degree sequence we expect to see
We have computed the threshodg values for this two- further improvements. The gaps between the simulatioritsesu
state noiseless/useless BSC channel operating at a ratearaf threshold values are due to the use of LDPC codes
1/2 bit per channel use using density evolution under théth relatively short codeword lengths. By using codes with
following three different conditions: (1) joint channelast sufficiently long codeword lengths, the simulation reswis
estimation/decoding, (2) no channel state estimation,(8hd approach the threshold values. In Fig. 3, simulation resark
perfect CSI. The results are presented in Table | for rate 13Bown for the(3, 6)-regular LDPC code cases corresponding
codes together with the maximum achievabjeas promised to the entries given in Table |. Th@, 6)-regular LDPC code
by channel capacity, and tlag achievable based on simulationwhich we used was designed by David Mackay [21] and has
results @, ~ 10~°) using a regular, rate 1/2, LDPC code ot codeword length of 4000. It can be seen from the figure
codeword length 4000. As can be seen from the table, tthet joint channel state estimation/decoding performsesio
thresholds of the iterative channel state estimationfdiego to the system with perfect CSI dsincreases. For the case
schemes are substantially better than those obtained asingf no state estimation and perfect CSl, channels with block
decoder that makes no attempt to estimate the channel stltrgths of 2 or 10 achieve the same thresholds (see Table
As the block lengthh increases, received symbols are morh. The simulation performance for this case (see Fig. 3),
correlated and this correlation can be efficiently exptbibty however, depends on the block length, and unlike the case
the joint channel state estimation/decoding receivereNloat of joint channel state estimation/decoding, the perfortean
threshold calculations indicate that the gap betw€gas and degrades as the block length increases for a fixed codeword
Cinterleave CaN be substantially narrowed by using joint channéngth. This trend is due to the fact that when the codeword
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10 T T 10 T T T T T
O No state estimation, h = 10 A Simulation (4,8) LDPC, n = 4000 .
* No state estimation, h =2 O Simulation (3,6) LDPC, n = 4000
+ Joint est./decoding, h = 2 o Simulation (3,6) LDPC, n = 8000
o Joint est./decoding, h = 10 + Threshold (4,8) LDPC
_|| ¢ Perfectstate information, h =10 _,|l_x_ Threshold (3,6) LDPC
10 " A Perfect state information, h = 2 3 10 "¢ 3
g0’ 1 w10k J
10" g 10" E
(0.685) (0.746|)
x
10’5 L L L L 10’5 L L L ‘ L J L
0 0.2 0.4 0.6 0.8 1 0.3 0.4 0.5 0.6 0.7 0.9 1
1—£b l—sb

Fig. 3. Simulation performances of a (3,6)-regular LDRC= 4000 on the Fig. 4. Performance comparison between (3,6)-regular LDRCs=

two-state noiseless/useless BSC block interference ehann 4000, 8000 and a (4,8)-regular LDPCr = 4000 on the two-state noise-
less/useless BSC block interference channel wite= 10 when employing
joint channel state estimation and decoding

IV. MAXIMUM LIKELIHOOD PERFORMANCE OFLDPC

s . OVER THEBLOCK INTERFERENCECHANNEL
length is fixed, the number of independent blocks decreases a

the block length increases. A smaller number of independentn this section, we will derive information theoretic bosnd
blocks yields a larger probability that an atypically largéor the performance of an optimal maximum likelihood re-
number of bad channel states occurs. Thus, a higher decodigiyer on the two-state noiseless/useless BSC block inter-
error rate occurs for schemes that do not estimate the charfeeence channel. The bounds will be derived based on the
state and for schemes with perfect CSI as the block lengtasumption that the code is restricted to be in an ensemble of
increases and the codeword length is held fixed. The situatig/, ¥)-regular LDPC codes. The quantity of interest is éner
is different for joint channel state estimation/decodismce €xponendf the code family The error exponent describes the
increased correlation occurs between received symbols rate at which the probability of codeword error of the best
the block length increases for a fixed codeword length, aséquence of codes in the ensemble decreases as the codeworc
this correlation can be efficiently exploited by the receivelength increases. When the code ensemble is enlarged to
Nevertheless, it is also possible under some situations tizclude all possible codes (i.e., not just LDPC codes), this
the increased correlation between symbols is insufficient &rror exponent(R) will dependonly on the channel and will
compensate for the decreasing number of independent hlodks referred to ashannel error exponentor a(j, k)-regular
and a degradation in performance will result. Note thatehesDPC ensemble, we will define the LDPC error exponent as
results are only physically meaningful whén< n. Whenh 1
becomes an appreciable fractionrgfoutagerates as opposed E(j,k) = lim sup |——log Pop:(j, k,n) (30)
to bit-error-rates are the appropriate performance measur e n
where P, (4, k,n) is the codeword error probability of the

The most important use of density evolution is to optibest(j, k)-regular LDPC code (i.e., théj, k)-regular LDPC
mize the code degree sequence as well as other decodinde with the lowest probability of codeword error assuming
parameters. The computational complexity of the densitgaximum likelihood decoding) of codeword length
evolution technique does not depend on the codeword lengthln [19], an argument has been made that the block interfer-
and thus it provides a more efficient way to optimize thence channel can be treated as a memoryless channel where
code degree sequence than using simulations. In Fig. 4, aach block ofh symbols from the original channel forms a
compare the thresholds and simulation performances of-(3,6ingle input of the corresponding super channel. Thus, the
regular and (4,8)-regular LDPC when employing joint channeoding theorem and all the bounding techniques developed
state estimation/decoding over a channel with block lengtbr memoryless channels can be applied directly to the block
10. The two codes have the same rate but the (3,6)-regulaerference channel with and without perfect CSI. Evahgat
code outperforms the (4,8)-regular code. These resultgicd these bounds, however, is usually quite involved due toittee s
with those predicted by threshold values obtained by dgnsif the input and output alphabets, which grow exponentially
evolution and given in Table I. Also illustrated in the figurewith the hop lengthh. The computation is not particularly
is the fact that code performance gets closer to its thrdshdurdensome for the case of the two-state noiseless/useless
value as the codeword length increases. BSC block interference channel. Using standard techniques
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the monotonicity of the channel error exponent when channel
state is known to the receiver together with a proof of eriste

of an optimal hop length when channel state is unknown to
the receiver are given in [11] for a general class of block
interference channels.

A general case analysis of the LDPC code error exponent
for the block interference channel is usually quite invdlve
however, the derivation can be simplified for some special
cases such as the two-state noiseless/useless BSC channel
described in section Il. The basic bounding technique theat w
apply here was developed by Gallager [1] and Fano [24]. We
have made some modifications to extend the technique to the
block interference channel.

In [19], it was argued that the block interference channel
can be treated as a memoryless channel where each black of
symbols from the original channel forms a single input of the
corresponding super channel. bet = zoo, 710, -, Z(n’'—1)0
be the codeword of length transmitted over the super chan-
nel, and lety = yq, y2, ..., yn-—1 be the corresponding received
sequence, where’ = n/h is the number of times the channel
is used independently during transmission and we assume
divides n. The input symbolz;, and the output symbai;
are letters of the input and output alphabet of the memayles
super channel that represents the block interference ehann
Let the other codewords be; = zo;, 715, ..., (n/—1); Where
j=1,2,....M —1andM is the number of codewords. Using

g maximum-likelihood decoding, a decoding error occursvifé (
w o1 consider a “tie” an error)
n'—1 n'—1
> log P(yilai) > Y log P(yi|zio) (31)
0.05 i=0 =0

Rate

Fig. 6. Lower bound on the channel error exponent of the tiates
noiseless/useless BSC block interference chanpek= 0.2 when channel

state is unknown

[22][23], lower bounds (i.e., the random coding channel ex-
ponentE (R)) on the channel error exponent can be derived.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

for somej # 0. We define the symbol discrepancy between
input symbolz;; and output symbol; as

d(zj,vy;) = log P(yzlfvzj) (32)
and the sequence discrepancy betwgeandy as
n'—1
D(X]‘,y) = Z d(:c”,yz) (33)
=0

These bounds are shown in Fig. 5 and 6 for the cases whBfe applying the union bound to (31), the codeword error
the channel state is known and unknown to the receiv@robability can be bounded by

respectively.

M—-1

As illustrated in the figures, the lower bound on the channeBD

error exponent at any rate is monotonically decreasing tlgh
hop length when the channel state is known to the receiver.
This result provides some theoretical justification for the
increase in error probability observed in section Il foeth
channel with known CSI as the hop length increases. The
monotonicity described above is not present at all rates for
the case when channel state is unknown to the receiver. In
fact, the hop length at which the lower bound on the chann|
error exponent is maximum varies as a function of rate. This
observation illustrates the tradeoff that exists betwerm t

IA

IA

Pr L_J1 [D(xj,y) < D(x0,)] (34)

Pr[D(xq,y) > nd]
M—1
Y PrlDx0.y) < 18 DO y) < Dlxo.y)]

(39)

?\k/oking the Chernoff bound, we get, for any> 0

n'—1

number of independent hops and the ability of the receiver to Pr[D(x¢,y) > nd] < H ¢i(2) | exp(—nzd)  (36)
=0

estimate the channel state as previously described. A mfoof
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where¢;(z) is the moment generating function defined by Hence, ifx, andx; differ in m symbols and agree in’ —m
symbols, we will have

¢i(2) = > Plyilwio)' " (37)
vi Pr[D(x;,y) < nd; D(x;,y) < D(x0,y)]
By symmetry, it can be verified that;(z) does not depend < [h(r)]m[g(r)]"/_me_"“s (48)
on the value ofr;y. Thus the value of the bound is the same
for any transmitted codeworgl, and for any » < 0. We will assume without loss of generality
) that the all O codeword is transmitted ag, and thatx;
i ' is a codeword of some weiglit# 0. We will evaluate the
H 9i(2) = [9(2)] (38)  error probability bound (48) by using the weight spectrum of
=0 the code. In order to do so, we need to establish the relation
where between the binary weigtitof the codeword and the number
bi(z) = g(z) = Zp(yilxio)lfz (39) of super symbolsn wherex, andx; differ. Let Poox(l,m,n)
" denote the probability that any randomly chosen codeword of

weight/ and lengthn will differ from the all zero codeword in

m super symbol positions. The symbol pairg andz;, are

) ‘fi(?entical when they agree in every onefobinary positions in

of (3,5)' we again invoke the Chernoff bound. Letandw;  yhe syper symbol. The LDPC code ensemble to be considered

be nopairs of random.vfanables with joint probablhty MaSShcludes all possible permutations of the codeword bitds Th

function P;(v;, w;) and joint moment generating function i jies that, given a codeword of weightn some randomly

chosen code from the LDPC code ensemble, the ones are

(1) = 3 D exp(rvi + wi) Piviwi) - (40) equally likely to be in any of the: positions. Thus computing

Poox(1,m,n) is equivalent to placing indistinguishable balls

Let V andW each be sums of independent random variablgs random inton’ = n/h distinguishable boxes, each box

for any value ofz;

Vi  W;

as defined below having a capacity to hold balls, and asking for the probability
n—1 1 Poox(l, m, n) thatm of the boxes contain at least one ball. For
V= Z v W = Z w; (41) L, m andh fixed, an exponentially tight bound in on the
P e probability can be given by
we have n' . h h m /
() [miny (£)): (29) (e
n/71 |: { L(:Z)J [7n,—| }:| S Pbox(l’m’n) S (m)(rg)l )
Pr(V < no; W < nw) < 11 hi(r, &) | exp[—n(rv + &w)) l ! (49)

for m > [1] and 0 otherwise. The upper bound in (49) follows
(42) h o
from the fact that the number of combinationsrefnonempty
boxes equals the number of ways to choaséoxes out of
v = d(x0, i) w; = d(xij,yi) — d(zi0,91)  (43) n' boxes times the number of ways to placéalls in the
mh spaces of thosen boxes with at least one ball per box.
that The former quantity is given b{(;) while the latter is upper
Pyilio) ¢ bounded by(";h). The lower bound in (49) follows from the
hi(r, &) = Z {Pl_r(yi|$i0) {llo} } (44) fact that one way to fill then nonempty boxes is to fill each
i P(yilai;) one of them with an equal (or approximately equal) number
of balls.
Invoking the well-known bound on the binomial coefficients
hi(r,€) = g(r) = > explrd(wio, y:)] Plyilzio)  (45) @venin [1]

Yi

for anyr <0, £ <0. It follows from (40) with

If z;; = x40, then (44) becomes

1 1
whereg(r) is as defined in (39). By symmetry, one can verify Jim exp [nHe(e) T Dne(l—o)
thath,(r, £) does not depend on the particulgp or x;;. Thus n 1
without loss of generality we can assume thaf = [0...0] < ( ) <
andz;; = [1...1]. With 7 held fixed, ,(r, €) given by (44) ne 2mne(1 —e)
achieves its minimum value wheh= ”;1, and thus for any
Lij 7# T40,

exp [nH.(¢)]  (50)

wherene is an integer less than or equal toand

B r—1 H.(¢) = —€eloge — (1 — €)log(1 —¢) (51)
hiry=h (r, 5 > (46)

[ is the entropy function. We have
=Y [Plyile = [0...0)P(ys|lz = [1...1]))] = (47)
Yi

Phox(l,m, n) < Cy(l, m, n)enBEmm) (52)
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where
Blt.mm) = 1H (™) M, (Wih) ., (i)
(53)
1-— 7% 1
it = ¢ 2em (1- %) (1= 77) Lzm - :ﬂ
(52)

Let N(I) be the number of codewords at a distahfem x.
Thus from (48), we have

M-—1
Z Pr[D(xo,y) < nd; D(x;,y) < D(x0,y)] <

n min(n’,l)

SIN@e™™ ST ()™ ()] " Prow(l,m,n) (55)
=0

m=[1/h]

Let

108

E(.k)

Fig. 7. Lower bound on the error exponent @f k)-regular LDPC over

the two-state noiseless/useless BSC block interferenaaneh withh = 10
(1) be the average number of codewords of weighithen channel state is known aeg= 0.1

[ in some ensemble of linear codes. The ensemble average

probability of decoding error is then given by (35),(363)3

and (55) as

E < g(z)n'efnzé

min(n’,l)

+Y N Y B ()] Poa (1, myn)

1=0 m=[1/h]

(56)
foranyz >0, r <0

In[1][25], N (1) of a (4, k)-regular LDPC ensemble has been

shown to be bounded by

N(I) < C(A,n)enBXN (57)
whereX = [/n and
BO) = (1=j)H.()
+2 1) + (k= Dlog(2)] = jyA  (58)
_ A ey
CAan) = [2mnA(1—A)]7 exp 21 =) (59)
p(r) = log{27*[1+e)" +(1—€")"]} (60)
where, the parameter to optimize the bound, is selected su
that A = £2),
Letting

C, = max C(a\n) C, = max Cy(l,m,n)  (61)

For a givenz, r and A, we select the valué that makes
the two exponents in (62) equal. With this choicedof(62)
becomes

P. < (1+n'nC,C,) exp{—n[m}%n E(z,7,\)]} (63)
where
Bl ) = gy oela()] - | BV

r_ o~
+ max {7;: log[h(r)] + n _ m log[g(r)] + B()\n,mﬂ”b)}]
64)
By (30), we have
E(j,k) > max min F(z,r,\)

T 2>0,r<0 A

(65)

Optimizing (65) with respect to,, z and X\ yields a lower
bound on the error exponent of a random ensemblg.df)-
regular LDPC codes used over the two-state noiselessassele
BSC block interference channel. We evaluated this bound
for some regular LDPC code ensembles with variable node
gﬁgreesj = 3,4,5 and 6. The LDPC code ensemble weight
Istribution exponentB(\) used in (64) is given by (58),
however, we expurgated from the ensemble all codes with
minimum fractional weight) satisfying B(A\) < 0. This
expurgation will have negligible effect since, asymptalii
almost all codes in the ensemble belong to this expurgated

rearranging (56), and bounding the summation by the numk&{semble. The results along with the lower bounds on the
of terms in the sum times the value of the maximum term, Wehannel error exponent,, (R) [22][23] are shown in Figs.

get
1
P. <exp {n [ ogz(z)

exp {n [B()x) — 70 + max (ZZ log[h(r)]

n' —m

— 2(5] } +n'nC,C, max

_|_

log[g(r)] + E(An,m,n)ﬂ } (62)

7 and 8 for the cases when the channel state is known
and unknown, respectively. The critical rate [22.,, of

the channels has also been computed and is indicated on
these figures. The bounf(R) is known to be tight, i.e.,
Er(R) = E(R) for R > R, [22].

As can be seen, the lower bound on the error exponent
of the regular LDPC code ensemble approaches the random
coding channel exponent bounBy (R), as the node degree
j increases for the case wheie= 10 ande, = 0.1. Similar
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