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Design of Grating-Assisted Waveguide Couplers with 
Weighted Coupling 

Kim A. Winick, Member, IEEE 

Abstract-The design of grating-assisted, channel waveguide, 
codirectional couplers is demonstrated using the Gel’fand-Lev- 
itan-Marchenko inverse scattering method. Weighted coupling 
coefficients are computed from rational function expressions for 
the desired wavelength response. Approximate formulas are 
derived which relate the waveguide and grating geometries to 
the computed coupling coefficients. The technique is illustrated 
by designing a directional coupler haviag a third-order Butter- 
worth filter characteristic and a 130 A full-width-half-maxi- 
mum bandwidth. 

I. INTRODUCTION 
IGHTWAVE communication networks have enor- L mous information carrying capacities. Many users 

may share the network by using dense wavelength divi- 
sion multiplexing. These lightwave networks, along with 
other optoelectronic systems, require narrow-band wave- 
length-selective devices for successful operation. It has 
long been known that directional couplers, consisting of 
a pair of closely spaced, single-mode, parallel wave- 
guides, may be used as filters [1]-[4]. Power is ex- 
changed between the waveguides through the evanescent 
fields of the two guided modes. The transfer of power is 
described by the following relationship [5] : 

In ( l ) ,  P,(O)  denotes the power injected into guide 1 at z 
= 0, and P2(L)  equals the power transferred from guide 
i into guide 2 at a distance z = L .  cI2 and c21 are the 
coupling constants determined by the waveguide mate- 
rials and geometry, and 6 is the dephasing term 

(2) 
where /3,(h) and P2(A) are the propagation constants of 
the combined waveguide structure, and A is wavelength. 
It is seen from (1) that maximum power transfer occurs 
when 6 = 0 and L ( c 1 2 c 2 1 ) 1 / 2  = n / 2 .  Using (1) and (2) 
the fractional bandwidth of the coupler may be expressed 
as 

2NA) = Pl(N - P 2 ( N  

- I  

(3) 
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where AA is the full-width-half-maximum filter band- 
width, N I  and N2 are the effective indexes of the two 
waveguide modes, L ( C ~ ~ C ~ , ) ~ / ’  = n /2 ,  and A. is the 
wavelength for which phase synchronism is achieved, that 
is 6 = 0. For practical materials and coupling geometries, 
d N I  /dA - d N , / d A  is typically quite small, therefore the 
selectivity of these filters is limited. In addition, the filters 
exhibit high sidelobe levels (i.e., -9.3 dB) as indicated 
in Fig. 1. 

The selectivity of directional couplers may be increased 
significantly by phase matching the guides using a grat- 
ing, as shown in Fig. 2. With grating-assisted coupling, 
(2) becomes 

where A is the grating period, and the + sign corresponds 
to the case of contradirectional and codirectional cou- 
pling, respectively. Similarly, (3) is modified to read 

AA - 0.841 [ 
b L  d A  - d A  

( d N  d N 2 )  I-’ 
- 1 - A  ’+- ( 5 )  

where 

(6) 

As indicated by ( 5 )  and (6), contradirectional coupling 
offers much greater wavelength selectivity than is achiev- 
able with codirectional operation. Contradirectional cou- 
pling, however, requires submicron period gratings, 
which may be difficult to fabricate. Recently, Alfemess 
et al. [6] have demonstrated codirectional, grating-as- 
sisted, coupler having a 65-A bandwidth. This device 
consisted of vertically stacked InGaAsP waveguides on 
InP, and phase matching was achieved using a relatively 
course 14.4-pm period grating. The device, however, ex- 
hibited high sidelobe levels. 

It has been previously shown that filter characteristics 
may be controlled in corrugated waveguide filters (CWF) 
[7]-[ 121 and directional couplers by tapering the coupling 
coefficient [ 131-[ 161. In directional couplers, the tapering 
can be implemented by varying the spacing between the 
guides [13]-[15] or by varying grating parameters [16], 
such as length, depth, duty cycle, and/or period. Most of 
the work reported to date in this area has been directed 
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Fig. 1 .  Directional coupler response. 
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Fig. 2. Grating assisted directional coupler. 

toward sidelobe suppression. Furthermore, only the 
strength of the coupling coefficient has been tapered (not 
the period), and the design techniques used have been ad 
hoc. Recently, Song and Shin [ I l l  have applied the 
Gel’fand-Levitan-Marchenko inverse-scattering tech- 
nique to the design of corrugated waveguide filters. Given 
a rational representation of the desired filter characteris- 
tic, their technique yields an exact analytic description of 
the required coupling coefficient. Song and Shin have ap- 
plied this technique to design linear and Butterworth 
CWF’s, while Winick and Roman [12] have used the 
method to design parabolic CWF’s. 

The fabrication of tapered corrugated waveguide filters 
suffers from practical difficulties. Since device operation 
is based on contradirectional mode coupling, submicron 
gratings are required. Codirectional, grating-assisted, di- 
rectional couplers, on the other hand, need only coarse 
gratings. The corresponding increase in grating period 
should make it substantially easier to realize a specified 
amplitude and phase taper, thus achieving the desired 
coupling coefficient. Directional coupler filters also enjoy 
the advantage (compared to single guide CWF’s) that the 
filtered wavelength components are spatially separated. 
Codirectional operation, however, does entail a sacrifice 
in wavelength selectivity as noted above, and may also 
result in significant coupling to radiation modes [17]. 

In this paper, codirectional , grating-assisted, direc- 
tional couplers will be analyzed. The analysis will be re- 
stricted to planar waveguide geometries, consisting of a 

pair of parallel, asymmetric, channel waveguides, similar 
to those which may be fabricated in glass and LiNb03 by 
ion or proton exchange. Coupling via both surface relief 
and bulk gratings imbedded between the guides will be 
considered, but radiation losses are not explicitly com- 
puted. Marcatili’s method will be used to determine the 
modes of the combined structure. The coupling coeffi- 
cient will be expressed as an integral involving the mode 
profiles and the grating parameters. An approximate 
closed-form expression for the coupling coefficient will 
also be derived in the limit of negligible guide-to-guide 
interaction. Finally, these results will be combined with 
the Gel’fand-Levitan-Marchenko inverse scattering tech- 
nique to design a directional coupler, which has a third- 
order Butterworth filter characteristic. 

11. FIELD DISTRIBUTION AND PROPAGATION CONSTANTS 
FOR PARALLEL CHANNEL WAVEGUIDES 

Directional couplers have been constructed using a va- 
riety of geometries. Two of the more common configu- 
rations are a pair of parallel channel waveguides imbed- 
ded into a planar substrate (see Fig. 2), and a pair of 
vertically stacked planar waveguides [6]. The vertically 
stacked configuration is particularly well-suited for 
monolithically integrated optoelectronic devices, fabri- 
cated using epitaxially grown semiconductor materials. 
Confinement, however, is restricted only to a plane, prop- 
agation losses are high, and the growth process is com- 
plex. Parallel channel waveguides, on the other hand, can 
be easily fabricated in LiNb03, glass, and semiconductor 
materials. Furthermore, in glass and LiNb03 substrates, 
low-loss channel guides are obtained using standard pho- 
tolithography and thermal ion exchange or proton ex- 
change techniques. Single-step fabrication of both the 
channel waveguides and the phase matching grating is also 
a possibility when using these materials. 

In this section the field distribution and the propagation 
constants will be computed (approximately) for an imbed- 
ded pair of parallel, equal depth, rectangular, channel 
waveguides. The computation is based on a direct appli- 
cation of Marcatili’s method, which can be used when the 
guided modes are not near cutoff. 

Consider the directional coupler shown in Fig. 3. This 
device is divided into the following nine regions: 

region 1 : -d I x I 0; 

region 2 : x I -d; 

region 3 : 0 I x; 

region 4 : -d I x I 0; 

region 5 : -d I x I 0; 

region 1’: -d I x I 0; 

0 I y I w I  

O r y I w ,  

O I Y I W l  

wI I y 
- s  I y I 0 

-(s + w2) I y I -s 

-(s + w2) I y I 

-(s + w2) I y I 

y I -(s + w2). 

region 2‘: x I -d; 

region 3‘: 0 I x; 

--s 

-s  

region 4’: -d I x I 0; 
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1 ’ : 3’ ,  and 1 ’ : 2’ boundaries (since K~ << knf, K~ << kn,, 
K~ << kn,), (2) E, is exactly matched at the 1 :4, 1 : 5, 
1 ‘ : 5, and 1 ’ : 4’ boundaries, (3) E,. is approximately 
matched at the 1 : 2 and 1’ : 2‘ boundaries (since nf = n,), 
and (4) E, may be neglected at the remaining 1 : 3 and 
1’ : 3’ boundaries (since E, << E J .  After some tedious 

Thus, the dominant field components are Ey, E,, H,, and 
H ,  . 

Vx = k d w  

N: - ns 
nj - n: 

b, = ~ 

a$* a$2 
ax2 ay  
- + 7 + K i $  = 0. 

We restrict our analvsis to mooanatinn modes, whose 
1 . Y  Y 

electric (i.e., quasi-TE fields are modes). aligned It primarily is easy to along verify the that y-direction the field 
= 4  [ 1 ( n Z J 7  2 JT) ~ components given in Appendix A satisfy (7) and (€9, and 2 nf ns 1 - b, 

yield such a mode. For guiding to occur, the propagation 
constants must lie in the range tan (!,,-.)] 

r 
kn, 5 /3 5 knf (9) 

Assuming that n, = nf,  it follows from (A1)-(AlO) in 
Appendix A that 

E, << E, << E, 

H: << H, and H,, = 0. 
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where 

Note that 

V, = k w l m  (19) 

~ t .  - nf 

18) will always have at least two solutions. The 
propagation constant of the entire two guide structure may 
be expressed in terms of b, and b, by combining (14), 
(16), (17), (20)-(22), and (Alg).  The resulting expres- 
sion is 

P 2  = (n! - n:)(b, + by - 1) + n,’. (23) 
Observe that (12)-( 17) are identical to those describing 
TE mode propagation in a three layer asymmetrical slab 
waveguide having refractive indexes nc,  nf, I t s ,  and thick- 
nesses 00, d ,  00. Similarly, (1 8)-(22) describe TM mode 
propagation in a pair of parallel slab waveguides, con- 
sisting of five layers having refractive indexes n,, nf, n,, 
nf, ns, and thicknesses 00, w I ,  s, w2, 00. 

When the separation s between the waveguides is made 
sufficiently large, then guides no longer show significant 
interaction. With s = 00, the left-hand side of (18) van- 
ishes, and the right-hand side reduces to the following 
pair of independent equations: 

-7 

where q and r are nonnegative integers. Fig. 4 is a plot 
of the effective indexes P / k ,  of the first two waveguide 
modes as a function of the waveguide separation s. Fig. 
5 is a plot of the corresponding mode profiles, H,( y). The 
field strengths have been normalized so that the two modes 
shown have equal power. For comparison purposes, the 
mode profiles are also plotted in Fig. 5 assuming that the 
two individual guides do not interact. It follows from Figs. 
4 and 5 that the individual waveguides (for the example 
shown) are essentially noninteracting when separated by 
more than approximately 1 pm. The electric field profile 
E,(y)  can be determined from H,(y) using the field 
expressions given in Appendix A. 

Each of the separate waveguides should support only a 
single mode. This places upper and lower limits on V, and 
V,. Since cutoff “along the x direction” occurs when 6, 
= 0, it follows from (12) that V, must satisfy 

tan-’ di I v,. (26) 

Observe from (23) that by must be greater than 1 - b, for 
guiding to occur (i.e., for > kn,). Combining this fact 
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Fig. 4.  Effective indexes of the guided modes (n, = 2.3, n ,  = 2.2, n, = 

1.0. d = w ,  = 1.5 pm, w2 = 0.7 pm, s = 2.0 j”. 
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Fig. 5. Magnetic field mode profiles (n, = 2.3. n, = 2.2, n, = 1.0, d = 

w ,  = 1.5 pm, w2 = 0.7 wm. s = 2 .0  pm). 

(and Vy = (w, /d)V,)  with (24) yields the following bound 
for the aspect ratios, w i l d ,  of the waveguides: 

V,J& + V X J &  
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Fig. 6.  Single-mode propagation region (n, = 2 . 3 ,  n ,  = 2.2,  n,  = 1.0). 
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Fig. 7 .  Maximum effective index for a single-mode guide (n, = 2 . 3 ,  n ,  = 
2 . 2 ,  n,  = 1.0). 

where b, is given by (12) with p = 0. If forp = 1, (12) 
admits a second solution, denoted b:, then for single- 
mode operation the aspect ratio must also satisfy (27b) 
below 

Using (23), (26), and (27), the allowable V, - wi/d re- 
gion for single-mode operation is computed and plotted 
in Fig. 6. 

It follows from (5) and (6) that the grating-assisted co- 
directional coupler will have the largest wavelength se- 
lectivity when the effective indexes, NI and N2, have the 
largest difference. This difference is at its maximum when 
one of the guided modes is as far from cutoff as possible, 
while the other lies very close. When the waveguides do 
not interact significantly then max (NI) - N2 may be com- 
puted with the aid of Fig. 6. Fig. 7 is a plot of max (NI) 
versus d for single mode operation. Note that NI - N2 
must always be less than NI - n,, which in turn is less 
than nf - n,. Thus, material considerations will signifi- 
cantly impact the achievable wavelength selectivity. 

111. FIELD NORMALIZATION 
The expressions for Ey and H, can be simplified when 

the guide-to-guide separation, s, is large. The fields of the 
two guided modes (m = 1 ,  2) can then be written as 

E y , m ( x ,  Y )  z E y , m ( x ) f m ( Y )  (28) 

- ( 
0, E y  . m ( x )  f m (  Y )  k H i - , m ( X >  Y )  a H x , m ( x ) f m ( Y )  = 

(29) 
where 

Cm cos K,C$ exp ( - y 3 x ) ,  0 5 x 

0 2 x 2 - d  C m  COS K,& + C$), 
Cm COS KAC$ - d) exp [Y~(x + d)l, 

x I -d 

(30) 

E y , m ( x )  = 

f A Y )  = 
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iAk ’n? where 

0, U 1 0  

1, U > 0. 
(41) 

cm = -. (32) 
~ y ,  m P x  

sgn ( U )  = 
The second subscript in Y ~ , ~ ,  and K ~ , ,  denotes one of the 
two guided modes, that is, either m = 1 or m = 2. Equa- 
tions (28)-(32) were derived using the field expressions 
given in Appendix A, (AlO), and the fact that = Px 

The coefficient is then given by 15] 

(Po / E o )  - m  
when nf = n,. c12(z) = 

If P, equals the power in the mth guided mode, then 

where 

(33) 

where (E.r,m, E,.,,,, is the normalized (i.e., Pm = I /2  
in (33)) electric field amplitude of the mth guided mode, 
and An2@, y, z) is the grating-induced refractive index 
perturbation. Note that the term n(z) in (42) is used to 
describe nonperiodic gratings. 

The x and z field components in (42) may be neglected 
since E, << E, << E,. (see ( IO)) .  Thus 

(35) 

Note that N,, y2, and y3 do not depend on wI or w2. From 
(30) and (A1 I ) ,  it is also shown that 

IV. MODE COUPLING 
It is well known that the interaction between the two 

orthogonal guided modes of a directional coupler can be 
described by the following pair of first-order differential 
equations [5] : 

- -  dB2(z) - -icT2(z) exp [-i26(h)z]BI(z) (39b) dz 

where Bl(z) and B2(z) are the complex electric field am- 
plitudes of the two guided modes, c12(z) is the coupling 
coefficient, and 6( A) is defined by (4) 

27r 
26(N = P d W  - P A X )  - n. (4) 

In the grating region, the refractive index n,(x, y, z )  of 
the directional coupler may be expressed as 

If the grating is centered between the two waveguides, has 
depth d, width t ( z ) ,  and a uniform index change An2 = 
n; - n;, then (43) becomes 

E, . . Ik  Y)E,..2(X, y )  dx dy. (44) 

The coupling coefficient may be evaluated numerically 
using the field expressions given in Appendix A. When 
the guides do not have significant interaction, then the 
simplified field expressions given in Section I11 may be 
used instead, and the following result is obtained: 

where 

Note that the above coupled mode analysis assumes that 
the guided modes of the separate channel waveguides are 
approximately orthogonal [ 181. If the grating is of the sur- 
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face relief, rather than bulk type, then c12(z) given above 
must be multiplied by the following factor: 

2h (d - n:><n; - N I )  
Dd,, <n; - n;)(n; - n:) 

where h is the depth of the surface corrugation. 

(47) 

V. GEL’FAND-LEVITAN-MARCHENKO TECHNIQUE 
The Gel’fand-Levitan-Marchenko (GLM) inverse 

scattering technique was developed for quantum mechan- 
ics. In principle, it provides an exact method for finding 
the potential function in Schrodinger’s wave equation 
from scattering data. The potential is obtained as the so- 
lution of an integral equation, and for one-dimensional 
problems, this integral equation reduces to a set of linear 
simultaneous equations. Kay [ 191, and later Pechenick and 
Cohen [20], showed that these equations may be easily 
solved numerically, provided the scattering data is ex- 
pressed as a rational function of wavelength. The GLM 
technique can be extended to inverse scattering problems, 
where the scattering system is modeled as a pair of cou- 
pled-mode equations, such as those given in (39). In these 
cases, the objective is to find cI2(z ) ,  given measurements 
of B2(L) /BI(L)  versus 6. As in the one-dimensional prob- 
lem, the GLM integral equations can be easily solved nu- 
merically, provided the scattering data, B2(L) / B l ( L ) ,  is 
expressed as a rational function of 6 [ 1 I]. 

The GLM procedure is implemented as follows. First 
define the reflection coefficient, r(6) ,  as B2(L) /Bl (L)  
evaluated at 6 .  Second, let u = -i6 and express r ( u )  as 
a rational function G(u) = P(u) /Q(u ) .  Q(u)  is a polynom- 
ial of order N with all of its roots lying in the left half 
plane, and P(u)  is a polynomial of order N - 1 or less. 
Third, find the N roots of Q(u) in the complex plane and 
denote them by pI  , p2, - . - , pN. Fourth, form the poly- 
nomial F(u) = Q(u)Q*(-u*) + P(u)P*(-U*),  and find 
the 2 N roots of F(u)  in the complex plane. Denote these 
roots by w I ,  0 2 ,  * . , UN, -U;,  -U:, . , -U;. Fifth, 
solve the following system of 2 N  simultaneous linear 
equations: 

(n  = 1 , 2 ,  * * *  1 N )  (48) 

for gl,,, ,(z), and g2Jz), where z denotes distance mea- 
sured along the length of the grating from z = 0 to z = 
L.  Finally, compute the coupling coefficient using (49) 
below. 

N 

~ 1 2 ( ~ )  = 2 C gi,,(z) exp (wriz) 
ri = I 

- C(-w,*>gL(z> exp (-4~). (49) 

Observe from (39) that the reflection and coupling coef- 
ficients scale according to the following rule: 

If 6, is an arbitrary constant and if cI2(z)  corresponds 

to r (6 ) ,  then 6,cI2(z) corresponds r(6/6,). (50) 

r*(6) = - r ( -6) .  (51) 

Also note that 

As an example, consider the directional coupler with 
parameters specified in Table I. We wish to determine the 
grating profile needed to reali?e a third-order Butterworth 
filter response, with a 130-A full-width-half-maximum 
bandwidth. Thus 

where 6, is the filter half-power point, and b2 is the frac- 
tion of input power transfered to guide 2 at phase syn- 
chronism (i.e., 6 = 0). Without loss of generality, it has 
been assumed that Bl(0)  = 1 .  In view of (50) ,  we may 
also assume that 6,, = 1 and consider scaling factors later. 
If the device is lossless, then power must be conserved 
and thus 

(53) 1Bl(L)I2 + 1B2(L)I2 = 1. 

Combining (51), (52), and (53) yields 

(54) 

P(u) = ib (55)  

Thus, P(u) ,  Q(u) ,  and F(u) are given by 

F(u) = 1 - u6. 

If b = 0.9, it then follows that 

p 1  = 0.7582 exp i - , p2 = -0.7582, ( 23 
p3 = 0.7582 exp (i 2) 

(57) 

Fig. 8 is a plot of cI2(z) obtained from (48) and (49). The 
corresponding plot of (B,(L) I * ,  computed from (39) with 
cI2(z )  truncated to the interval 0 I z I 6, is shown in 
Fig. 9. For comparison purposes, the desired filter re- 
sponse 0.81/(1 + 6’) is also shown. Note the excellent 
agreement. 

It follows from (4) and (6) that 

* ( A  - XO). (58 )  
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TABLE I 
DIRECTIONAL COUPLER PARAMETERS (see Fig. 3) 

nr = 2.3 

n, = 2.2 

n, = 1.0 

wl = d = 1.5 pm 

w, = 0.7 pm 

s = 2.0 pm 

NI(&) = 2.2538 

N2(&) = 2.2235 

& = 1.3 pm 

I 

-0.24 ' 1 . I . I . I . I . 
0 1 2 3 4 5 6 

Position z 
Fig. 8. Coupling coefficient for 3rd-order butterworth filter (cut-off nor- 

malized to I ,  maximum magnitude = 0.81). 
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Fig. 9. 3rd-order butterworth filter design using GLM technique. 
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Fig. I O .  Tapered grating widths required for a 3rd-order butterworth filter 
(bandwidth 130 A ,  maximum magnitude = 0.81). 
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c a, 
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F 

3 
L 

a" 0.2 

0.0 
- 1 5 0  - 1 0 0  - 5 0  0 5 0  1 0 0  1 5 0  

Wavelength Deviation (A) 
Fig. 1 1 .  3rd-order butterworth filter designed using GLM technique. 

For glass and LiNb03, the dispersion term on (58) is small 
and thus 

(59) 
2lr 

26(A) = -7 (NI - & ) ( A  - A()). 
A0 

Using the coupler parameters given in Table I ,  and as- 
suming a FWHM of 130 A ,  it follows from (59) that 6,. 
= 0.36 mm-l. Fig. 10 is a plot of the required grating 
width, r (z) ,  computed from the Fig. 8 and (45). A nega- 
tive value of t ( z )  is used to indicate a 180" phase shift in 
the grating. Physically, this phase shift is realized by dis- 
placing the grating by one-half cycle at the position z ,  
where t goes to zero. Fig. 11 gives the filter response cor- 
responding to Fig. 10. 
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Finally, observe that it may be easier to produce a de- 
sired coupling coefficient by modulating the duty cycle of 
the grating, rather than by changing its width, t. This is 
true because the grating period is quite large compared to 
its width. 

VI. CONCLUSIONS 

In this paper, the design of grating-assisted, codirec- 
tional couplers is demonstrated using the Gel’fand-levi- 
tan-Marchenko inverse scattering technique. The cou- 
plers considered are parallel, step-index, channel 
waveguides, separated by either bulk or surface relief 
gratings. Weighted coupling coefficients are computed, 
given a specification of the coupler’s wavelength re- 
sponse. The waveguide and grating geometries are related 
to these coupling coefficients using approximate, closed- 
form expressions, which are derived. The technique is il- 
lustrated by designing a proton-exchanged, LiNb03, di- 
rectional coupler, which has a. third-order Butterworth fil- 
ter characteristic and a 130-A full-width-half-maximum 
bandwidth. 

In grating assisted codirectional couplers, the grating 
periods are rather large. This fact should make it possible 
to fabricate some of these devices using standard photo- 
lithography, combined with ion diffusion or proton ex- 
change techniques. Large grating periods, however, do 
limit the achievable wavelength selectivity and may lead 
to significant radiation losses. The design technique dis- 
cussed in this paper may be easily extended to contra- 
directional coupling, which greatly enhances the selectiv- 
ity and eliminates the radiation problem. Device fabrica- 
tion, however, becomes difficult, because tapered sub- 
micron gratings are required. 

APPENDIX A 

Region 1: 

E, = A cos K,(X 4- 4) COS ~ ~ ( y  + q) (A 1 a) 

sin K,(X + 4)  sin K ~ ( Y  + q) (Alb) 

where 

k2nj - p 2  = K: + ~ y ’ .  
Region 2: 

E, = iA (F) ($) cos ~,(6 - d )  COS Ky(Y + 7) 

Ey = iA (L) 2 (k2n: - K ; )  cos ~,(4 - d )  
K y P  ns 

112 
H, = -iA (:) nj (E) cos K,(+ - d )  

* cos K,$ sin K ~ ( Y  + q) exp (-y3x) (A3b) 

E, = -iA (7) ($) cos ~ , 4  cos K ~ ( Y  + q) 

E) = iA (L) 2 (k2n: - K;) 
K y P  nc 

(‘414 * cos K , ~ J  sin K,(Y + 7) exp (-y3x) (A3d) 
I 12 I 12 

H, = -iA (2) nj (t) cos K,(X + 4) sin K,(Y + q) H, = -iA (2) nj (E) 
(A 1 e) cos K,+ sin K ~ ( Y  + q) exp (-y3x) (A3e) 

H, = 0 Hy = 0 ( A 3 0  
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where 

k2n: - p2  = K: - 7;. (A3g) 
Region 4: 

E, = A cos K ~ ( W ,  + q) cos K,(X + 4) exp [-y4(y - wl)] 

(A4a) 

Region 1 ’ : 
E, = A’ cos K,(X + 4) cos K ~ ( Y  4- q’) (A64 

* sin K,(X + 4) sin K ~ ( Y  + 9’) (A6b) 

E, = -iA’ (:) sin K,(X + 4) cos K ~ ( Y  + q’) (A6c) 

Ey = iA’ ($) (k2nj - K:) 

* cos K,(X + 4) sin K ~ ( Y  + 7’) (A64 
I /2 

H, = -iA‘ (2) nj (t) 
- cos K,(X + 4) sin K ~ ( Y  + q’) W e )  

Hy = 0 

where 

COS (Ky7,7) COS Y4(S - CY) 

A’ = (A6g) cosh (y4a) COS ~ ~ ( 7 ’  - s) ’ 

Region 2‘: 

E, = A’  ( z )  COS K,(+ - d )  COS K~(Y + 7’) 

I /2 

sinh y4(y + CY) H, = -iA’ (2 )  nj ( 5 )  cos K,($ - d )  COS K , . q  COS K.,(X + 4) (‘454 cosh 7 4 ~ 1  

sinh y4(y + a) 
cosh y4a 

Region 3’: 

E, = A’ ($) cos ~ , 4  cos K ~ ( Y  + 7’) exp (-y3x) (A8a) 

COS K,J COS K.,(X + 4) (A5e) 

H,. = 0. ( A 5 0  
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* cos K , ~ I  sin K,(Y + 7’) exp (-y3x) (A8b) 

E, = -iA (F) ($) cos K,+ cos K,(Y + 7’) 

E, = iA’ (L) 2 (k2nf: - K;) 
K,P nc 

* cos K,+ sin K,(Y + 7’) exp (-y3x) (A8d) 
’ 1 2  

H, = -iA’ (2) n; (E) cos K,+ sin K ~ ( Y  + 7’) 

- exp [Y4(Y + s + W2)l (A9e) 

H, = 0. ( A 9 0  

The propagation constant, 0, of a guided mode must 
I nr. Thus, it follows from 

K,. << 0 (AlOa) 

Kx << P (AlOb) 

K,, << knf (AlOc) 

K, << knf (AlOd) 

Y4 << knf (Aloe) 

Y2 << knf (AlOf) 

satisfy the inequality n, I 
(Alg), (A2g), and (A4g) that 

when n, = nf. 

In (Al)-(A9), the parameters K,, K,, 4 ,  0, 7, v ‘ ,  and (Y 

(A is an arbitrary constant) are determined by matching 
the tangential E and H fields at the boundaries of the nine 
regions. In particular, matching the tangential H, com- 
ponent at the 1 : 2 and 1 : 3 boundaries yields the following 
value for 4: 

(A1 1) 

Similarly, matching the tangential H, at the 1 : 4, 1 : 5, and 
1‘ : 4’, yields 7, 7’ and (Y as indicated below 

1 
Kx K X  

4 = - tan-’ z. 

n2 K, 
tan K ~ ( w ~  + 7) = -3 - 

nf Y4 

KY n: 
7 4  n: 

sin K,(S + w2) - cos K,(S + w 2 )  tan K,V’ = - - 

(A 13) 

Y4 

K, 
tanhy4a = -tan K , V .  

(A141 

Expressions for the remaining parameters K,, K,, and P are 
given in Section I1 of this paper. 

Below several useful identities are given. First, from 
(Alg), (A2g), (A3g), and (A4g) it follows that: 

(A15a) 

(A15b) 

(A15c) 

k2(n; - n:) = K: + Y; 
k2(n; - n:) = K; + y i  

k2(n; - n:) = K: + Y:. 
Second, using (16), (17), (21), and (22) one finds 

k2(n; - N i )  = K: 

k (nf - N:) = K: 

(A16a) 

(A16b) 2 2  

and finally, combining (A15) and (A16) yields 

k2(N:  - n:) = Y: 

k2(N:  - n:) = -y$ 

k2(N: - n:) = Y:. 

(A17a) 

(A17b) 

(A17c) 

APPENDIX B 
Observe that E,@) and H,(x) ,  as given in (28)-(30), are 

identical to the TE mode field expressions for a three 
layer, asymmetrical, slab waveguide [2 11. Therefore, 

where 

(B2) 
1 1  

Y2 73 
de, = d + - + -. 

Direct integration off:(y) yields 
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It follows from (A12) that 

Thus, 

K4. m 
I ns2~4.m I 

‘Os (Ky.mWm’2) = Jn?-y;., + n:K:.m Jy;. ,  + Kf.m 

(B6) 

where the approximations given in (B5) and (B6) follow 
from n, = nf Combining (B3), ( B 3 ,  and (B6) yields 

Equations (35)-(37) in Section I11 now immediately fol- 
low from (Bl), (B2), and (B7). 

Direct integration of E,(x) given by (30) yields 

It follows from (A1 1) that 

Observe that (12) and (13) can be written as 

Equation (38) of Section I1 now follows directly from 
(B8), (B9), and (B11). 
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